Ana Caroline Dos Santos, Guilherme Machado Holzlsauer, João Paulo Ruiz Lucio de Lima Parra, Raí André Querino Candelária, Thamires Santos da Silva, Rodrigo da Silva Nunes Barreto, Maria Angelica Miglino
{"title":"气管重建中的有机和合成替代品:范围审查(2015-2025)。","authors":"Ana Caroline Dos Santos, Guilherme Machado Holzlsauer, João Paulo Ruiz Lucio de Lima Parra, Raí André Querino Candelária, Thamires Santos da Silva, Rodrigo da Silva Nunes Barreto, Maria Angelica Miglino","doi":"10.3390/bioengineering12070704","DOIUrl":null,"url":null,"abstract":"<p><p>Tracheal defects have been the focus of research since the 19th century, but reconstructing this complex structure remains challenging. Identifying a safe, effective tracheal substitute is a key goal of surgery. This integrative review explores current tracheal substitutes and tissue engineering techniques. Data were collected from June 2024 to March 2025 from electronically available databases. Articles published between 2015 and 2025 were selected using the individualized protocol for each database. After screening 190 articles, 82 were excluded, and 108 were reviewed, with 100 meeting the final inclusion criteria. Recent substitutes include three-dimensional synthetic grafts made from polycaprolactone and copolyamide with thermoplastic elastomer, thermoplastic polyurethane and polylactic acid. Additionally, models using decellularized and recellularized tracheal matrix scaffolds and bioprinting techniques are being developed. Comparative studies of synthetic grafts and tracheal scaffolds, as well as cell self-aggregation methods to create tracheal analogues, are discussed. Advances in hybrid approaches combining synthetic polymers with extracellular matrix components aim to improve biocompatibility and functional integration. The importance of selecting appropriate preclinical animal models, such as goats, is also highlighted for translational relevance. Further research is required to refine protocols, overcome challenges related to vascularization and immune response, and ensure the development of clinically viable, long-lasting tracheal substitutes.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 7","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12292422/pdf/","citationCount":"0","resultStr":"{\"title\":\"Organic and Synthetic Substitutes in Tracheal Reconstruction: A Scoping Review (2015-2025).\",\"authors\":\"Ana Caroline Dos Santos, Guilherme Machado Holzlsauer, João Paulo Ruiz Lucio de Lima Parra, Raí André Querino Candelária, Thamires Santos da Silva, Rodrigo da Silva Nunes Barreto, Maria Angelica Miglino\",\"doi\":\"10.3390/bioengineering12070704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tracheal defects have been the focus of research since the 19th century, but reconstructing this complex structure remains challenging. Identifying a safe, effective tracheal substitute is a key goal of surgery. This integrative review explores current tracheal substitutes and tissue engineering techniques. Data were collected from June 2024 to March 2025 from electronically available databases. Articles published between 2015 and 2025 were selected using the individualized protocol for each database. After screening 190 articles, 82 were excluded, and 108 were reviewed, with 100 meeting the final inclusion criteria. Recent substitutes include three-dimensional synthetic grafts made from polycaprolactone and copolyamide with thermoplastic elastomer, thermoplastic polyurethane and polylactic acid. Additionally, models using decellularized and recellularized tracheal matrix scaffolds and bioprinting techniques are being developed. Comparative studies of synthetic grafts and tracheal scaffolds, as well as cell self-aggregation methods to create tracheal analogues, are discussed. Advances in hybrid approaches combining synthetic polymers with extracellular matrix components aim to improve biocompatibility and functional integration. The importance of selecting appropriate preclinical animal models, such as goats, is also highlighted for translational relevance. Further research is required to refine protocols, overcome challenges related to vascularization and immune response, and ensure the development of clinically viable, long-lasting tracheal substitutes.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 7\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12292422/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12070704\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12070704","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Organic and Synthetic Substitutes in Tracheal Reconstruction: A Scoping Review (2015-2025).
Tracheal defects have been the focus of research since the 19th century, but reconstructing this complex structure remains challenging. Identifying a safe, effective tracheal substitute is a key goal of surgery. This integrative review explores current tracheal substitutes and tissue engineering techniques. Data were collected from June 2024 to March 2025 from electronically available databases. Articles published between 2015 and 2025 were selected using the individualized protocol for each database. After screening 190 articles, 82 were excluded, and 108 were reviewed, with 100 meeting the final inclusion criteria. Recent substitutes include three-dimensional synthetic grafts made from polycaprolactone and copolyamide with thermoplastic elastomer, thermoplastic polyurethane and polylactic acid. Additionally, models using decellularized and recellularized tracheal matrix scaffolds and bioprinting techniques are being developed. Comparative studies of synthetic grafts and tracheal scaffolds, as well as cell self-aggregation methods to create tracheal analogues, are discussed. Advances in hybrid approaches combining synthetic polymers with extracellular matrix components aim to improve biocompatibility and functional integration. The importance of selecting appropriate preclinical animal models, such as goats, is also highlighted for translational relevance. Further research is required to refine protocols, overcome challenges related to vascularization and immune response, and ensure the development of clinically viable, long-lasting tracheal substitutes.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering