什么时候才算够?确定现场观看研究参与者样本量的经验指南。

IF 3.9 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Alex J Hoogerbrugge, Ignace T C Hooge, Roy S Hessels, Christoph Strauch
{"title":"什么时候才算够?确定现场观看研究参与者样本量的经验指南。","authors":"Alex J Hoogerbrugge, Ignace T C Hooge, Roy S Hessels, Christoph Strauch","doi":"10.3758/s13428-025-02754-8","DOIUrl":null,"url":null,"abstract":"<p><p>Eye tracking is widely used to study where spatial attention is allocated across stimuli. However, determining a sufficient and efficient number of participants for such studies remains a challenge. While clear guidelines have been established for many classical statistical tests, no straightforward participant sample size guidelines exist for the comparison of gaze distribution maps and area-of-interest analyses - two of the most prominent analyses in scene viewing studies. Just how many participants should be included for reliable and reproducible gaze estimations? We here utilized gaze data to a single static image, viewed by 1248 individuals (dataset 1), and gaze data to 200+ images, viewed by 84 participants each (dataset 2). Researchers can assess which of these datasets and analysis types most resemble their setup and determine their sample size accordingly. Although we cannot provide a one-size-fits-all sample size recommendation, we show progressively diminishing returns for a range of sample sizes and for two typical study types. For example, when using Normalized Saliency Score as a metric of distribution map similarity, a 5% relative increase requires increases in sample size from 13 <math><mo>→</mo></math> 20 <math><mo>→</mo></math> 34 participants (based on dataset 1) or from 10 <math><mo>→</mo></math> 16 <math><mo>→</mo></math> 32 participants (based on dataset 2). Alternatively, when analyzing the number of visits to certain areas of interest, a 25% decrease in outcome variance requires increases in sample size from 13 <math><mo>→</mo></math> 24 <math><mo>→</mo></math> 44. We provide easy-to-use guidelines and reference tables to determine scene viewing participant sample size for academics and industry professionals alike.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 9","pages":"241"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304073/pdf/","citationCount":"0","resultStr":"{\"title\":\"When is enough enough? Empirical guidelines to determine participant sample size for scene viewing studies.\",\"authors\":\"Alex J Hoogerbrugge, Ignace T C Hooge, Roy S Hessels, Christoph Strauch\",\"doi\":\"10.3758/s13428-025-02754-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eye tracking is widely used to study where spatial attention is allocated across stimuli. However, determining a sufficient and efficient number of participants for such studies remains a challenge. While clear guidelines have been established for many classical statistical tests, no straightforward participant sample size guidelines exist for the comparison of gaze distribution maps and area-of-interest analyses - two of the most prominent analyses in scene viewing studies. Just how many participants should be included for reliable and reproducible gaze estimations? We here utilized gaze data to a single static image, viewed by 1248 individuals (dataset 1), and gaze data to 200+ images, viewed by 84 participants each (dataset 2). Researchers can assess which of these datasets and analysis types most resemble their setup and determine their sample size accordingly. Although we cannot provide a one-size-fits-all sample size recommendation, we show progressively diminishing returns for a range of sample sizes and for two typical study types. For example, when using Normalized Saliency Score as a metric of distribution map similarity, a 5% relative increase requires increases in sample size from 13 <math><mo>→</mo></math> 20 <math><mo>→</mo></math> 34 participants (based on dataset 1) or from 10 <math><mo>→</mo></math> 16 <math><mo>→</mo></math> 32 participants (based on dataset 2). Alternatively, when analyzing the number of visits to certain areas of interest, a 25% decrease in outcome variance requires increases in sample size from 13 <math><mo>→</mo></math> 24 <math><mo>→</mo></math> 44. We provide easy-to-use guidelines and reference tables to determine scene viewing participant sample size for academics and industry professionals alike.</p>\",\"PeriodicalId\":8717,\"journal\":{\"name\":\"Behavior Research Methods\",\"volume\":\"57 9\",\"pages\":\"241\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304073/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior Research Methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-025-02754-8\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-025-02754-8","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

眼动追踪被广泛用于研究空间注意力在刺激之间的分配。然而,为这类研究确定足够和有效的参与者数量仍然是一个挑战。虽然已经为许多经典的统计测试建立了明确的指导方针,但没有直接的参与者样本大小指导方针来比较凝视分布图和兴趣区域分析——这是场景观看研究中最重要的两种分析。为了可靠和可重复的凝视估计,应该包括多少参与者?在这里,我们使用了1248个人观看的单个静态图像的凝视数据(数据集1),以及200多个图像的凝视数据,每个图像由84名参与者观看(数据集2)。研究人员可以评估哪些数据集和分析类型与他们的设置最相似,并相应地确定他们的样本量。虽然我们不能提供一个放之四海而皆准的样本量建议,但我们显示了样本量范围和两种典型研究类型的收益递减。例如,当使用Normalized Saliency Score作为分布图相似性的度量时,5%的相对增加需要从13→20→34个参与者(基于数据集1)或从10→16→32个参与者(基于数据集2)增加样品量。或者,当分析特定兴趣区域的访问次数时,结果方差减少25%需要样本量从13→24→44增加。我们提供易于使用的指南和参考表,以确定学者和行业专业人士的场景观看参与者样本大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

When is enough enough? Empirical guidelines to determine participant sample size for scene viewing studies.

When is enough enough? Empirical guidelines to determine participant sample size for scene viewing studies.

When is enough enough? Empirical guidelines to determine participant sample size for scene viewing studies.

When is enough enough? Empirical guidelines to determine participant sample size for scene viewing studies.

Eye tracking is widely used to study where spatial attention is allocated across stimuli. However, determining a sufficient and efficient number of participants for such studies remains a challenge. While clear guidelines have been established for many classical statistical tests, no straightforward participant sample size guidelines exist for the comparison of gaze distribution maps and area-of-interest analyses - two of the most prominent analyses in scene viewing studies. Just how many participants should be included for reliable and reproducible gaze estimations? We here utilized gaze data to a single static image, viewed by 1248 individuals (dataset 1), and gaze data to 200+ images, viewed by 84 participants each (dataset 2). Researchers can assess which of these datasets and analysis types most resemble their setup and determine their sample size accordingly. Although we cannot provide a one-size-fits-all sample size recommendation, we show progressively diminishing returns for a range of sample sizes and for two typical study types. For example, when using Normalized Saliency Score as a metric of distribution map similarity, a 5% relative increase requires increases in sample size from 13 20 34 participants (based on dataset 1) or from 10 16 32 participants (based on dataset 2). Alternatively, when analyzing the number of visits to certain areas of interest, a 25% decrease in outcome variance requires increases in sample size from 13 24 44. We provide easy-to-use guidelines and reference tables to determine scene viewing participant sample size for academics and industry professionals alike.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信