基于自适应Unscented卡尔曼平滑的惯性运动捕获数据肌肉骨骼逆运动学工具:OpenSim的实现。

IF 5.4 2区 医学 Q3 ENGINEERING, BIOMEDICAL
Matti J Kortelainen, Paavo Vartiainen, Alexander Beattie, Jere Lavikainen, Pasi A Karjalainen
{"title":"基于自适应Unscented卡尔曼平滑的惯性运动捕获数据肌肉骨骼逆运动学工具:OpenSim的实现。","authors":"Matti J Kortelainen, Paavo Vartiainen, Alexander Beattie, Jere Lavikainen, Pasi A Karjalainen","doi":"10.1007/s10439-025-03807-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Conventional tools for human kinematics estimation presume that observations are subject to uncorrelated, zero-mean Gaussian noise, and they provide no estimate for the uncertainty of their solutions. This paper presents AUKSMIKT-a tool for whole-body kinematics estimation in the Bayesian framework to account for these shortcomings.</p><p><strong>Methods: </strong>We implemented AUKSMIKT as a C++ class that extends the OpenSim (v4.5) application programming interface. AUKSMIKT is based on the unscented Kalman filter combined with a run-time estimator of process and observation noises, and a fixed-lag Rauch-Tung-Striebel smoother. We tested the performance of AUKSMIKT using data from a public dataset consisting of both optical and inertial motion capture data recorded from overground walking subjects. We computed the mean absolute errors of estimated angular positions, velocities, and accelerations with respect to the gold standard optical motion capture estimates, and compared these metrics to those obtained from the least squares estimation-based tool native to OpenSim.</p><p><strong>Results: </strong>AUKSMIKT produced smaller errors than the native tool for the angular position of three joints (0.8-1.9%), the velocities of six joints (0.7- <math><mo>-</mo></math> 7.6%), and the accelerations of seven joints (3.0-13.7%). AUKSMIKT produced larger errors in the angular positions of five joints (1.3-7.6%), and the velocities of three joints (4.4-8.3%).</p><p><strong>Conclusion: </strong>With respect to the optical motion capture solution, AUKSMIKT can estimate lower-body kinematics from inertial motion capture data with comparable or higher accuracy than the native OpenSim least squares estimator.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Musculoskeletal Inverse Kinematics Tool for Inertial Motion Capture Data Based on the Adaptive Unscented Kalman Smoother: An Implementation for OpenSim.\",\"authors\":\"Matti J Kortelainen, Paavo Vartiainen, Alexander Beattie, Jere Lavikainen, Pasi A Karjalainen\",\"doi\":\"10.1007/s10439-025-03807-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Conventional tools for human kinematics estimation presume that observations are subject to uncorrelated, zero-mean Gaussian noise, and they provide no estimate for the uncertainty of their solutions. This paper presents AUKSMIKT-a tool for whole-body kinematics estimation in the Bayesian framework to account for these shortcomings.</p><p><strong>Methods: </strong>We implemented AUKSMIKT as a C++ class that extends the OpenSim (v4.5) application programming interface. AUKSMIKT is based on the unscented Kalman filter combined with a run-time estimator of process and observation noises, and a fixed-lag Rauch-Tung-Striebel smoother. We tested the performance of AUKSMIKT using data from a public dataset consisting of both optical and inertial motion capture data recorded from overground walking subjects. We computed the mean absolute errors of estimated angular positions, velocities, and accelerations with respect to the gold standard optical motion capture estimates, and compared these metrics to those obtained from the least squares estimation-based tool native to OpenSim.</p><p><strong>Results: </strong>AUKSMIKT produced smaller errors than the native tool for the angular position of three joints (0.8-1.9%), the velocities of six joints (0.7- <math><mo>-</mo></math> 7.6%), and the accelerations of seven joints (3.0-13.7%). AUKSMIKT produced larger errors in the angular positions of five joints (1.3-7.6%), and the velocities of three joints (4.4-8.3%).</p><p><strong>Conclusion: </strong>With respect to the optical motion capture solution, AUKSMIKT can estimate lower-body kinematics from inertial motion capture data with comparable or higher accuracy than the native OpenSim least squares estimator.</p>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10439-025-03807-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-025-03807-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:用于人体运动学估计的传统工具假设观察结果受到不相关的零均值高斯噪声的影响,并且它们不提供对其解的不确定性的估计。本文提出了auksmikt -一个在贝叶斯框架中进行全身运动学估计的工具,以解决这些缺点。方法:我们将AUKSMIKT实现为扩展OpenSim (v4.5)应用程序编程接口的c++类。AUKSMIKT基于无气味卡尔曼滤波器,结合了过程和观测噪声的运行时估计器,以及固定滞后的劳希-东- striebel平滑器。我们使用来自公共数据集的数据测试了AUKSMIKT的性能,该数据集包括从地上行走的受试者记录的光学和惯性运动捕获数据。我们计算了相对于金标准光学运动捕捉估计的估计角位置、速度和加速度的平均绝对误差,并将这些指标与OpenSim原生的基于最小二乘估计的工具获得的指标进行了比较。结果:AUKSMIKT对3个关节的角位置误差(0.8 ~ 1.9%)、6个关节的速度误差(0.7 ~ 7.6%)、7个关节的加速度误差(3.0 ~ 13.7%)均小于国产刀具。AUKSMIKT在五个关节的角位置(1.3-7.6%)和三个关节的速度(4.4-8.3%)上产生较大的误差。结论:对于光学运动捕获解决方案,AUKSMIKT可以从惯性运动捕获数据中估计下体运动学,其精度与原生OpenSim最小二乘估计器相当或更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Musculoskeletal Inverse Kinematics Tool for Inertial Motion Capture Data Based on the Adaptive Unscented Kalman Smoother: An Implementation for OpenSim.

Purpose: Conventional tools for human kinematics estimation presume that observations are subject to uncorrelated, zero-mean Gaussian noise, and they provide no estimate for the uncertainty of their solutions. This paper presents AUKSMIKT-a tool for whole-body kinematics estimation in the Bayesian framework to account for these shortcomings.

Methods: We implemented AUKSMIKT as a C++ class that extends the OpenSim (v4.5) application programming interface. AUKSMIKT is based on the unscented Kalman filter combined with a run-time estimator of process and observation noises, and a fixed-lag Rauch-Tung-Striebel smoother. We tested the performance of AUKSMIKT using data from a public dataset consisting of both optical and inertial motion capture data recorded from overground walking subjects. We computed the mean absolute errors of estimated angular positions, velocities, and accelerations with respect to the gold standard optical motion capture estimates, and compared these metrics to those obtained from the least squares estimation-based tool native to OpenSim.

Results: AUKSMIKT produced smaller errors than the native tool for the angular position of three joints (0.8-1.9%), the velocities of six joints (0.7- - 7.6%), and the accelerations of seven joints (3.0-13.7%). AUKSMIKT produced larger errors in the angular positions of five joints (1.3-7.6%), and the velocities of three joints (4.4-8.3%).

Conclusion: With respect to the optical motion capture solution, AUKSMIKT can estimate lower-body kinematics from inertial motion capture data with comparable or higher accuracy than the native OpenSim least squares estimator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信