Francesca Raffini, Aurélien De Jode, Kerstin Johannesson, Rui Faria, Zuzanna B Zagrodzka, Anja M Westram, Juan Galindo, Emilio Rolán-Alvarez, Roger K Butlin
{"title":"在海洋蜗牛物种形成连续体的两个不同点上平行生态型之间的表型分化和基因组结构。","authors":"Francesca Raffini, Aurélien De Jode, Kerstin Johannesson, Rui Faria, Zuzanna B Zagrodzka, Anja M Westram, Juan Galindo, Emilio Rolán-Alvarez, Roger K Butlin","doi":"10.1111/mec.70025","DOIUrl":null,"url":null,"abstract":"<p><p>Speciation is rarely observable directly. A way forward is to compare pairs of ecotypes that evolved in parallel in similar contexts but have reached different degrees of reproductive isolation. Such comparisons are possible in the marine snail Littorina saxatilis by contrasting barriers to gene flow between parallel ecotypes in Spain and Sweden. In both countries, divergent ecotypes have evolved to withstand either crab predation or wave action. Here, we explore transects spanning contact zones between the Crab and the Wave ecotypes using low-coverage whole-genome sequencing, morphological and behavioural traits. Despite parallel phenotypic divergence, distinct patterns of differentiation between the ecotypes emerged: a continuous cline in Sweden indicating a weak barrier to gene flow, but two highly genetically and phenotypically divergent, and partly spatially overlapping clusters in Spain suggesting a much stronger barrier to gene flow. The absence of Spanish early-generation hybrids supported strong isolation, but a low level of gene flow is evident from molecular data. In both countries, highly differentiated loci were located in both shared and country-specific chromosomal inversions but were also present in collinear regions. Despite being considered the same species and showing similar levels of phenotypic divergence, the Spanish ecotypes are much closer to full reproductive isolation than the Swedish ones. Barriers to gene flow of very different strengths between ecotypes within the same species might be explained by dissimilarities in the spatial arrangement of habitats, the selection gradients or the ages of the systems.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e70025"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenotypic Divergence and Genomic Architecture Between Parallel Ecotypes at Two Different Points on the Speciation Continuum in a Marine Snail.\",\"authors\":\"Francesca Raffini, Aurélien De Jode, Kerstin Johannesson, Rui Faria, Zuzanna B Zagrodzka, Anja M Westram, Juan Galindo, Emilio Rolán-Alvarez, Roger K Butlin\",\"doi\":\"10.1111/mec.70025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Speciation is rarely observable directly. A way forward is to compare pairs of ecotypes that evolved in parallel in similar contexts but have reached different degrees of reproductive isolation. Such comparisons are possible in the marine snail Littorina saxatilis by contrasting barriers to gene flow between parallel ecotypes in Spain and Sweden. In both countries, divergent ecotypes have evolved to withstand either crab predation or wave action. Here, we explore transects spanning contact zones between the Crab and the Wave ecotypes using low-coverage whole-genome sequencing, morphological and behavioural traits. Despite parallel phenotypic divergence, distinct patterns of differentiation between the ecotypes emerged: a continuous cline in Sweden indicating a weak barrier to gene flow, but two highly genetically and phenotypically divergent, and partly spatially overlapping clusters in Spain suggesting a much stronger barrier to gene flow. The absence of Spanish early-generation hybrids supported strong isolation, but a low level of gene flow is evident from molecular data. In both countries, highly differentiated loci were located in both shared and country-specific chromosomal inversions but were also present in collinear regions. Despite being considered the same species and showing similar levels of phenotypic divergence, the Spanish ecotypes are much closer to full reproductive isolation than the Swedish ones. Barriers to gene flow of very different strengths between ecotypes within the same species might be explained by dissimilarities in the spatial arrangement of habitats, the selection gradients or the ages of the systems.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e70025\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.70025\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.70025","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Phenotypic Divergence and Genomic Architecture Between Parallel Ecotypes at Two Different Points on the Speciation Continuum in a Marine Snail.
Speciation is rarely observable directly. A way forward is to compare pairs of ecotypes that evolved in parallel in similar contexts but have reached different degrees of reproductive isolation. Such comparisons are possible in the marine snail Littorina saxatilis by contrasting barriers to gene flow between parallel ecotypes in Spain and Sweden. In both countries, divergent ecotypes have evolved to withstand either crab predation or wave action. Here, we explore transects spanning contact zones between the Crab and the Wave ecotypes using low-coverage whole-genome sequencing, morphological and behavioural traits. Despite parallel phenotypic divergence, distinct patterns of differentiation between the ecotypes emerged: a continuous cline in Sweden indicating a weak barrier to gene flow, but two highly genetically and phenotypically divergent, and partly spatially overlapping clusters in Spain suggesting a much stronger barrier to gene flow. The absence of Spanish early-generation hybrids supported strong isolation, but a low level of gene flow is evident from molecular data. In both countries, highly differentiated loci were located in both shared and country-specific chromosomal inversions but were also present in collinear regions. Despite being considered the same species and showing similar levels of phenotypic divergence, the Spanish ecotypes are much closer to full reproductive isolation than the Swedish ones. Barriers to gene flow of very different strengths between ecotypes within the same species might be explained by dissimilarities in the spatial arrangement of habitats, the selection gradients or the ages of the systems.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms