聚合物力学的迁移学习:一种融合方法来桥接SSBR中的分子动力学模拟和实验。

IF 4.3 3区 化学 Q2 POLYMER SCIENCE
Siqi Zhan, Zhenyuan Li, Hengheng Zhao, Zhanjie Liu, Qian Li, Shilong Ji, Weifeng Zhang, Qingsong Zhao, Liqun Zhang, Jun Liu
{"title":"聚合物力学的迁移学习:一种融合方法来桥接SSBR中的分子动力学模拟和实验。","authors":"Siqi Zhan, Zhenyuan Li, Hengheng Zhao, Zhanjie Liu, Qian Li, Shilong Ji, Weifeng Zhang, Qingsong Zhao, Liqun Zhang, Jun Liu","doi":"10.1002/marc.202500386","DOIUrl":null,"url":null,"abstract":"<p><p>The stress-strain curve is a key indicator of the mechanical behavior of polymeric materials and plays a vital role in optimizing the performance of solution-polymerized styrene-butadiene rubber (SSBR). Molecular dynamics (MD) simulations enable the investigation of microscale deformation mechanisms, yet their use of unrealistically high strain rates leads to stress values that diverge significantly from experimental results. To address this discrepancy, we proposed a weighted fusion framework that integrates transfer learning with a hybrid long short-term memory-multilayer perceptron (LSTM-MLP) model and the eXtreme Gradient Boosting (XGBoost) algorithm. A dataset of 100 simulated stress-strain curves was generated from 20 distinct SSBR molecular systems across five strain rates, supplemented with five experimental curves for SSBR (grade 2557TH) under varying tensile rates. The model was pretrained on the simulated data and fine-tuned using the limited experimental data, enabling stress-strain predictions consistent with experiments. Comparative analyses against alternative machine learning baselines confirmed the model's superior accuracy. Additionally, correlation analysis revealed how the four structural units of SSBR-styrene, 1,2-butadiene, cis-1,4-butadiene, and trans-1,4-butadiene-influence mechanical behavior, offering theoretical insights for targeted performance enhancement.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e00386"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning for Polymer Mechanics: A Fusion Approach to Bridge Molecular Dynamics Simulations and Experiments in SSBR.\",\"authors\":\"Siqi Zhan, Zhenyuan Li, Hengheng Zhao, Zhanjie Liu, Qian Li, Shilong Ji, Weifeng Zhang, Qingsong Zhao, Liqun Zhang, Jun Liu\",\"doi\":\"10.1002/marc.202500386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The stress-strain curve is a key indicator of the mechanical behavior of polymeric materials and plays a vital role in optimizing the performance of solution-polymerized styrene-butadiene rubber (SSBR). Molecular dynamics (MD) simulations enable the investigation of microscale deformation mechanisms, yet their use of unrealistically high strain rates leads to stress values that diverge significantly from experimental results. To address this discrepancy, we proposed a weighted fusion framework that integrates transfer learning with a hybrid long short-term memory-multilayer perceptron (LSTM-MLP) model and the eXtreme Gradient Boosting (XGBoost) algorithm. A dataset of 100 simulated stress-strain curves was generated from 20 distinct SSBR molecular systems across five strain rates, supplemented with five experimental curves for SSBR (grade 2557TH) under varying tensile rates. The model was pretrained on the simulated data and fine-tuned using the limited experimental data, enabling stress-strain predictions consistent with experiments. Comparative analyses against alternative machine learning baselines confirmed the model's superior accuracy. Additionally, correlation analysis revealed how the four structural units of SSBR-styrene, 1,2-butadiene, cis-1,4-butadiene, and trans-1,4-butadiene-influence mechanical behavior, offering theoretical insights for targeted performance enhancement.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e00386\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202500386\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202500386","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

应力应变曲线是表征高分子材料力学行为的重要指标,对优化溶液聚合丁苯橡胶(SSBR)的性能起着至关重要的作用。分子动力学(MD)模拟能够研究微观尺度的变形机制,但它们使用不切实际的高应变率导致应力值与实验结果显著偏离。为了解决这一差异,我们提出了一个加权融合框架,该框架将迁移学习与长短期记忆多层感知器(LSTM-MLP)混合模型和极限梯度增强(XGBoost)算法相结合。本文建立了20种不同SSBR分子体系在5种应变速率下的100条模拟应力-应变曲线数据集,并补充了不同拉伸速率下SSBR(等级2557)的5条实验曲线。该模型在模拟数据上进行预训练,并利用有限的实验数据进行微调,使应力应变预测与实验结果一致。与其他机器学习基线的比较分析证实了该模型的优越准确性。此外,相关分析揭示了ssbr的四个结构单元-苯乙烯、1,2-丁二烯、顺式-1,4-丁二烯和反式-1,4-丁二烯-对力学行为的影响,为有针对性地提高性能提供了理论见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer Learning for Polymer Mechanics: A Fusion Approach to Bridge Molecular Dynamics Simulations and Experiments in SSBR.

The stress-strain curve is a key indicator of the mechanical behavior of polymeric materials and plays a vital role in optimizing the performance of solution-polymerized styrene-butadiene rubber (SSBR). Molecular dynamics (MD) simulations enable the investigation of microscale deformation mechanisms, yet their use of unrealistically high strain rates leads to stress values that diverge significantly from experimental results. To address this discrepancy, we proposed a weighted fusion framework that integrates transfer learning with a hybrid long short-term memory-multilayer perceptron (LSTM-MLP) model and the eXtreme Gradient Boosting (XGBoost) algorithm. A dataset of 100 simulated stress-strain curves was generated from 20 distinct SSBR molecular systems across five strain rates, supplemented with five experimental curves for SSBR (grade 2557TH) under varying tensile rates. The model was pretrained on the simulated data and fine-tuned using the limited experimental data, enabling stress-strain predictions consistent with experiments. Comparative analyses against alternative machine learning baselines confirmed the model's superior accuracy. Additionally, correlation analysis revealed how the four structural units of SSBR-styrene, 1,2-butadiene, cis-1,4-butadiene, and trans-1,4-butadiene-influence mechanical behavior, offering theoretical insights for targeted performance enhancement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信