中熵合金/氧化物纳米复合材料用于高性能高温CO2电解,具有显著的抗积碳性能。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jun Tong, Haewon Seo, Yunseo Choi, Ji-eun Won, Jinhong Park, Keun Hwa Chae, Jongsup Hong, Hye Jung Chang, Baowen Zhou, Rongchang Cao, Na Ni, Kyung Joong Yoon, Lei Zhu, Zhen Huang
{"title":"中熵合金/氧化物纳米复合材料用于高性能高温CO2电解,具有显著的抗积碳性能。","authors":"Jun Tong,&nbsp;Haewon Seo,&nbsp;Yunseo Choi,&nbsp;Ji-eun Won,&nbsp;Jinhong Park,&nbsp;Keun Hwa Chae,&nbsp;Jongsup Hong,&nbsp;Hye Jung Chang,&nbsp;Baowen Zhou,&nbsp;Rongchang Cao,&nbsp;Na Ni,&nbsp;Kyung Joong Yoon,&nbsp;Lei Zhu,&nbsp;Zhen Huang","doi":"10.1002/advs.202508800","DOIUrl":null,"url":null,"abstract":"<p>Conventional solid oxide electrolysis cells (SOECs) with nickel/yttria-stabilized zirconia (Ni/YSZ) electrodes suffer from low CO<sub>2</sub> reduction activity and severe carbon deposition below 800 °C, limiting scalability. This study introduces a novel medium-entropy alloy/Mn-based oxide composite catalyst deposited via simple infiltration onto the fuel electrode, creating hierarchical heterogeneous metal/oxide nano-interfaces. The catalyst-decorated cell achieves a remarkable 46% increase in CO<sub>2</sub> electrolysis current density, reaching 2.15 A cm<sup>−2</sup> at 1.5 V and 750 °C. Simultaneously, the catalyst demonstrates exceptional carbon deposition resistance, evidenced by a 75% increase in the current density threshold for carbon formation. The cell maintains stable, carbon-free operation for 200 h at an extreme current density of 1.0 A cm<sup>−2</sup>. Comprehensive analyses combining in situ characterization and density functional theory (DFT) calculations revealed the enhanced performance originates from synergistic effects between the unique composition of the medium-entropy alloy and Mn-based oxides, and their distinctive nanostructured interfaces. This work presents a promising approach for developing advanced electrode materials for CO<sub>2</sub> electrolysis in SOECs, significantly contributing to the scalability and practical application of this critical technology.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 39","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202508800","citationCount":"0","resultStr":"{\"title\":\"Medium-Entropy Alloy/Oxide Nano Composite for High-Performing High-Temperature CO2 Electrolysis with Remarkable Carbon Deposition Resistance\",\"authors\":\"Jun Tong,&nbsp;Haewon Seo,&nbsp;Yunseo Choi,&nbsp;Ji-eun Won,&nbsp;Jinhong Park,&nbsp;Keun Hwa Chae,&nbsp;Jongsup Hong,&nbsp;Hye Jung Chang,&nbsp;Baowen Zhou,&nbsp;Rongchang Cao,&nbsp;Na Ni,&nbsp;Kyung Joong Yoon,&nbsp;Lei Zhu,&nbsp;Zhen Huang\",\"doi\":\"10.1002/advs.202508800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventional solid oxide electrolysis cells (SOECs) with nickel/yttria-stabilized zirconia (Ni/YSZ) electrodes suffer from low CO<sub>2</sub> reduction activity and severe carbon deposition below 800 °C, limiting scalability. This study introduces a novel medium-entropy alloy/Mn-based oxide composite catalyst deposited via simple infiltration onto the fuel electrode, creating hierarchical heterogeneous metal/oxide nano-interfaces. The catalyst-decorated cell achieves a remarkable 46% increase in CO<sub>2</sub> electrolysis current density, reaching 2.15 A cm<sup>−2</sup> at 1.5 V and 750 °C. Simultaneously, the catalyst demonstrates exceptional carbon deposition resistance, evidenced by a 75% increase in the current density threshold for carbon formation. The cell maintains stable, carbon-free operation for 200 h at an extreme current density of 1.0 A cm<sup>−2</sup>. Comprehensive analyses combining in situ characterization and density functional theory (DFT) calculations revealed the enhanced performance originates from synergistic effects between the unique composition of the medium-entropy alloy and Mn-based oxides, and their distinctive nanostructured interfaces. This work presents a promising approach for developing advanced electrode materials for CO<sub>2</sub> electrolysis in SOECs, significantly contributing to the scalability and practical application of this critical technology.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 39\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202508800\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202508800\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202508800","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的固体氧化物电解电池(soec)采用镍/钇稳定的氧化锆(Ni/YSZ)电极,在800°C以下,二氧化碳还原活性低,碳沉积严重,限制了可扩展性。本研究介绍了一种新型的中熵合金/锰基氧化物复合催化剂,通过简单的渗透沉积在燃料电极上,形成层叠的非均相金属/氧化物纳米界面。经过催化剂修饰的电池在1.5 V和750°C下的CO2电解电流密度显著提高了46%,达到2.15 a cm-2。同时,催化剂表现出优异的抗碳沉积能力,碳形成的电流密度阈值提高了75%。电池在1.0 A cm-2的极端电流密度下保持稳定,无碳运行200小时。结合原位表征和密度泛函理论(DFT)计算的综合分析表明,中熵合金和锰基氧化物的独特成分及其独特的纳米结构界面之间的协同效应增强了性能。这项工作为soec中二氧化碳电解的先进电极材料的开发提供了一种有前途的方法,为该关键技术的可扩展性和实际应用做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Medium-Entropy Alloy/Oxide Nano Composite for High-Performing High-Temperature CO2 Electrolysis with Remarkable Carbon Deposition Resistance

Medium-Entropy Alloy/Oxide Nano Composite for High-Performing High-Temperature CO2 Electrolysis with Remarkable Carbon Deposition Resistance

Conventional solid oxide electrolysis cells (SOECs) with nickel/yttria-stabilized zirconia (Ni/YSZ) electrodes suffer from low CO2 reduction activity and severe carbon deposition below 800 °C, limiting scalability. This study introduces a novel medium-entropy alloy/Mn-based oxide composite catalyst deposited via simple infiltration onto the fuel electrode, creating hierarchical heterogeneous metal/oxide nano-interfaces. The catalyst-decorated cell achieves a remarkable 46% increase in CO2 electrolysis current density, reaching 2.15 A cm−2 at 1.5 V and 750 °C. Simultaneously, the catalyst demonstrates exceptional carbon deposition resistance, evidenced by a 75% increase in the current density threshold for carbon formation. The cell maintains stable, carbon-free operation for 200 h at an extreme current density of 1.0 A cm−2. Comprehensive analyses combining in situ characterization and density functional theory (DFT) calculations revealed the enhanced performance originates from synergistic effects between the unique composition of the medium-entropy alloy and Mn-based oxides, and their distinctive nanostructured interfaces. This work presents a promising approach for developing advanced electrode materials for CO2 electrolysis in SOECs, significantly contributing to the scalability and practical application of this critical technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信