具有丰富锚点的多孔导电衬底增强锌-空气电池双功能电催化。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jongkyoung Kim, Je Min Yu, Jun-Yong Choi, Seong-Hun Lee, Han Uk Lee, Dongrak Oh, Hyunju Go, Wonsik Jang, Seunghyun Lee, Jaewon Cho, Sung Beom Cho, Tae Joo Shin, Hyunjoo Lee, Sang-Goo Lee, Ji-Wook Jang, Seungho Cho, Wook Jo
{"title":"具有丰富锚点的多孔导电衬底增强锌-空气电池双功能电催化。","authors":"Jongkyoung Kim, Je Min Yu, Jun-Yong Choi, Seong-Hun Lee, Han Uk Lee, Dongrak Oh, Hyunju Go, Wonsik Jang, Seunghyun Lee, Jaewon Cho, Sung Beom Cho, Tae Joo Shin, Hyunjoo Lee, Sang-Goo Lee, Ji-Wook Jang, Seungho Cho, Wook Jo","doi":"10.1002/advs.202506172","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient and robust bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are critical for high-performance zinc-air batteries (ZABs). However, balancing OER and ORR activity in a single catalyst remains challenging due to the different mechanisms during charging and discharging. Here, a scalable strategy is presented for enhancing both reactions by integrating two-dimensional OER- and ORR-active components onto a carbon-based conductive substrate with abundant anchoring sites, via high-shear exfoliation. The heterostructure catalyst demonstrates exceptional bifunctionality, achieving an extremely low overpotential difference of 0.63 V. First-principles calculations confirm a strong chemical compatibility between the active components and substrate. In scaled-up ZAB applications, the catalyst delivers a high peak power density of 1569 mW cm<sup>-2</sup>, and an outstanding cycling stability over 300 h (1800 cycles). This work highlights a versatile approach for designing multifunctional electrocatalysts, advancing scalable energy conversion and storage technologies.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e06172"},"PeriodicalIF":14.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Bifunctional Electrocatalysis for Zinc-Air Battery Using Porous Conductive Substrate with Abundant Anchoring Sites.\",\"authors\":\"Jongkyoung Kim, Je Min Yu, Jun-Yong Choi, Seong-Hun Lee, Han Uk Lee, Dongrak Oh, Hyunju Go, Wonsik Jang, Seunghyun Lee, Jaewon Cho, Sung Beom Cho, Tae Joo Shin, Hyunjoo Lee, Sang-Goo Lee, Ji-Wook Jang, Seungho Cho, Wook Jo\",\"doi\":\"10.1002/advs.202506172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Efficient and robust bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are critical for high-performance zinc-air batteries (ZABs). However, balancing OER and ORR activity in a single catalyst remains challenging due to the different mechanisms during charging and discharging. Here, a scalable strategy is presented for enhancing both reactions by integrating two-dimensional OER- and ORR-active components onto a carbon-based conductive substrate with abundant anchoring sites, via high-shear exfoliation. The heterostructure catalyst demonstrates exceptional bifunctionality, achieving an extremely low overpotential difference of 0.63 V. First-principles calculations confirm a strong chemical compatibility between the active components and substrate. In scaled-up ZAB applications, the catalyst delivers a high peak power density of 1569 mW cm<sup>-2</sup>, and an outstanding cycling stability over 300 h (1800 cycles). This work highlights a versatile approach for designing multifunctional electrocatalysts, advancing scalable energy conversion and storage technologies.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e06172\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202506172\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202506172","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高效、稳健的析氧反应(OER)和氧还原反应(ORR)双功能电催化剂是高性能锌空气电池(ZABs)的重要组成部分。然而,由于充电和放电过程中的机制不同,平衡单一催化剂的OER和ORR活性仍然具有挑战性。本文提出了一种可扩展的策略,通过高剪切剥落,将二维OER和orr活性组分集成到具有丰富锚定位点的碳基导电衬底上,从而增强这两种反应。异质结构催化剂表现出特殊的双功能,实现了0.63 V的极低过电位差。第一性原理计算证实了活性组分和底物之间有很强的化学相容性。在放大的ZAB应用中,催化剂提供1569 mW cm-2的峰值功率密度,并且在300小时(1800次循环)内具有出色的循环稳定性。这项工作强调了设计多功能电催化剂的通用方法,推进了可扩展的能量转换和存储技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Bifunctional Electrocatalysis for Zinc-Air Battery Using Porous Conductive Substrate with Abundant Anchoring Sites.

Efficient and robust bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are critical for high-performance zinc-air batteries (ZABs). However, balancing OER and ORR activity in a single catalyst remains challenging due to the different mechanisms during charging and discharging. Here, a scalable strategy is presented for enhancing both reactions by integrating two-dimensional OER- and ORR-active components onto a carbon-based conductive substrate with abundant anchoring sites, via high-shear exfoliation. The heterostructure catalyst demonstrates exceptional bifunctionality, achieving an extremely low overpotential difference of 0.63 V. First-principles calculations confirm a strong chemical compatibility between the active components and substrate. In scaled-up ZAB applications, the catalyst delivers a high peak power density of 1569 mW cm-2, and an outstanding cycling stability over 300 h (1800 cycles). This work highlights a versatile approach for designing multifunctional electrocatalysts, advancing scalable energy conversion and storage technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信