不同非共价相互作用的Møller-Plesset绝热连接理论。

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Etienne Palos, Heng Zhao, Kimberly J Daas, Eduardo Fabiano, Francesco Paesani, Stefan Vuckovic
{"title":"不同非共价相互作用的Møller-Plesset绝热连接理论。","authors":"Etienne Palos, Heng Zhao, Kimberly J Daas, Eduardo Fabiano, Francesco Paesani, Stefan Vuckovic","doi":"10.1021/acs.jpclett.5c01304","DOIUrl":null,"url":null,"abstract":"<p><p>Møller-Plesset adiabatic connection (MPAC) theory provides a powerful framework for constructing approximations to wave function-based correlation energy, enabling modeling of noncovalent interactions (NCIs) with near-CCSD(T) accuracy. We show that approximate MPAC functionals consistently outperform MP2 and dispersion-corrected DFT (DFT+DISP) across diverse systems, including charged and charge-transfer complexes. MPAC functionals operate holistically at the electronic level, require no heuristic dispersion corrections, and achieve near-chemical accuracy even for abnormal NCIs, cases where DFT+DISP errors exceed those of DFT. To further improve MPAC for abnormal cases without compromising overall performance, we introduce MPAC25, a simple two-parameter functional treating neutral and charged NCIs equally, as demonstrated on DES15K benchmarks. Overall, MPAC functionals effectively describe a wide range of NCIs, including those beyond the reach of other methods, representing a significant step toward predictive simulations of molecular interactions in complex environments and motivating further MPAC developments.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":" ","pages":"7898-7908"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Møller-Plesset Adiabatic Connection Theory for Diverse Noncovalent Interactions.\",\"authors\":\"Etienne Palos, Heng Zhao, Kimberly J Daas, Eduardo Fabiano, Francesco Paesani, Stefan Vuckovic\",\"doi\":\"10.1021/acs.jpclett.5c01304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Møller-Plesset adiabatic connection (MPAC) theory provides a powerful framework for constructing approximations to wave function-based correlation energy, enabling modeling of noncovalent interactions (NCIs) with near-CCSD(T) accuracy. We show that approximate MPAC functionals consistently outperform MP2 and dispersion-corrected DFT (DFT+DISP) across diverse systems, including charged and charge-transfer complexes. MPAC functionals operate holistically at the electronic level, require no heuristic dispersion corrections, and achieve near-chemical accuracy even for abnormal NCIs, cases where DFT+DISP errors exceed those of DFT. To further improve MPAC for abnormal cases without compromising overall performance, we introduce MPAC25, a simple two-parameter functional treating neutral and charged NCIs equally, as demonstrated on DES15K benchmarks. Overall, MPAC functionals effectively describe a wide range of NCIs, including those beyond the reach of other methods, representing a significant step toward predictive simulations of molecular interactions in complex environments and motivating further MPAC developments.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\" \",\"pages\":\"7898-7908\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.5c01304\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c01304","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

Møller-Plesset绝热连接(MPAC)理论为构建基于波函数的相关能的近似提供了一个强大的框架,使非共价相互作用(nci)的建模具有接近ccsd (T)的精度。我们发现,在不同的系统中,包括带电和电荷转移配合物,近似MPAC功能始终优于MP2和色散校正DFT (DFT+DISP)。MPAC功能在电子水平上整体运行,不需要启发式色散校正,即使在异常NCIs (DFT+DISP误差超过DFT的情况下)也能达到接近化学的精度。为了在不影响整体性能的情况下进一步改善异常情况下的MPAC,我们引入了MPAC25,这是一个简单的双参数函数,可以平等地处理中性和带电NCIs,如DES15K基准测试所示。总的来说,MPAC功能有效地描述了广泛的nci,包括那些其他方法无法达到的nci,代表了复杂环境中分子相互作用预测模拟的重要一步,并推动了MPAC的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Møller-Plesset Adiabatic Connection Theory for Diverse Noncovalent Interactions.

Møller-Plesset adiabatic connection (MPAC) theory provides a powerful framework for constructing approximations to wave function-based correlation energy, enabling modeling of noncovalent interactions (NCIs) with near-CCSD(T) accuracy. We show that approximate MPAC functionals consistently outperform MP2 and dispersion-corrected DFT (DFT+DISP) across diverse systems, including charged and charge-transfer complexes. MPAC functionals operate holistically at the electronic level, require no heuristic dispersion corrections, and achieve near-chemical accuracy even for abnormal NCIs, cases where DFT+DISP errors exceed those of DFT. To further improve MPAC for abnormal cases without compromising overall performance, we introduce MPAC25, a simple two-parameter functional treating neutral and charged NCIs equally, as demonstrated on DES15K benchmarks. Overall, MPAC functionals effectively describe a wide range of NCIs, including those beyond the reach of other methods, representing a significant step toward predictive simulations of molecular interactions in complex environments and motivating further MPAC developments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信