插层体VSe2中金属-绝缘体跃迁的纳米尺度测定。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wanru Ma, Ye Yang, Zuowei Liang, Ping Wu, Fanbao Meng, Zhenyu Wang, Xianhui Chen
{"title":"插层体VSe2中金属-绝缘体跃迁的纳米尺度测定。","authors":"Wanru Ma, Ye Yang, Zuowei Liang, Ping Wu, Fanbao Meng, Zhenyu Wang, Xianhui Chen","doi":"10.1021/acs.nanolett.5c02203","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional (2D) materials provide unique opportunities to realize emergent phenomena by reducing their dimensionality. Using scanning tunneling microscopy combined with first-principles calculations, we determine an intriguing case of a metal-insulator transition (MIT) in a bulk compound, (TBA)<sub>0.3</sub>VSe<sub>2</sub>. Atomic-scale imaging reveals that the initial 4a<sub>0</sub> × 4a<sub>0</sub> charge density wave (CDW) order in 1T-VSe<sub>2</sub> transforms to √7a<sub>0</sub> × √3a<sub>0</sub> ordering upon intercalation, which is associated with an insulating gap with a magnitude of up to approximately 115 meV. Our calculations reveal that this energy gap is highly tunable through electron doping introduced by the intercalant. Moreover, the robustness of the √7a<sub>0</sub> × √3a<sub>0</sub> CDW order against the Lifshitz transition points to the key role of electron-phonon interactions in stabilizing the CDW state. Our work clarifies a rare example of a CDW-driven MIT in quasi-2D materials and establishes cation intercalation as an effective pathway for tuning both the dimensionality and the carrier concentration without inducing strain or disorder.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoscale Determination of the Metal-Insulator Transition in Intercalated Bulk VSe<sub>2</sub>.\",\"authors\":\"Wanru Ma, Ye Yang, Zuowei Liang, Ping Wu, Fanbao Meng, Zhenyu Wang, Xianhui Chen\",\"doi\":\"10.1021/acs.nanolett.5c02203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-dimensional (2D) materials provide unique opportunities to realize emergent phenomena by reducing their dimensionality. Using scanning tunneling microscopy combined with first-principles calculations, we determine an intriguing case of a metal-insulator transition (MIT) in a bulk compound, (TBA)<sub>0.3</sub>VSe<sub>2</sub>. Atomic-scale imaging reveals that the initial 4a<sub>0</sub> × 4a<sub>0</sub> charge density wave (CDW) order in 1T-VSe<sub>2</sub> transforms to √7a<sub>0</sub> × √3a<sub>0</sub> ordering upon intercalation, which is associated with an insulating gap with a magnitude of up to approximately 115 meV. Our calculations reveal that this energy gap is highly tunable through electron doping introduced by the intercalant. Moreover, the robustness of the √7a<sub>0</sub> × √3a<sub>0</sub> CDW order against the Lifshitz transition points to the key role of electron-phonon interactions in stabilizing the CDW state. Our work clarifies a rare example of a CDW-driven MIT in quasi-2D materials and establishes cation intercalation as an effective pathway for tuning both the dimensionality and the carrier concentration without inducing strain or disorder.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c02203\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c02203","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)材料通过降低其维度为实现紧急现象提供了独特的机会。利用扫描隧道显微镜结合第一性原理计算,我们确定了一个有趣的金属-绝缘体跃迁(MIT)在大块化合物(TBA)0.3VSe2中的情况。原子尺度成像表明,1T-VSe2的初始4a0 × 4a0电荷密度波(CDW)顺序在插层后转变为√7a0 ×√3a0顺序,这与绝缘间隙的大小约为115 meV有关。我们的计算表明,通过引入电子掺杂,这种能隙是高度可调的。此外,√7a0 ×√3a0 CDW阶对Lifshitz跃迁的鲁棒性表明电子-声子相互作用在稳定CDW状态中的关键作用。我们的工作阐明了在准二维材料中cdw驱动的MIT的一个罕见例子,并建立了阳离子插层作为一种有效的途径来调节尺寸和载流子浓度,而不会引起应变或无序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoscale Determination of the Metal-Insulator Transition in Intercalated Bulk VSe2.

Two-dimensional (2D) materials provide unique opportunities to realize emergent phenomena by reducing their dimensionality. Using scanning tunneling microscopy combined with first-principles calculations, we determine an intriguing case of a metal-insulator transition (MIT) in a bulk compound, (TBA)0.3VSe2. Atomic-scale imaging reveals that the initial 4a0 × 4a0 charge density wave (CDW) order in 1T-VSe2 transforms to √7a0 × √3a0 ordering upon intercalation, which is associated with an insulating gap with a magnitude of up to approximately 115 meV. Our calculations reveal that this energy gap is highly tunable through electron doping introduced by the intercalant. Moreover, the robustness of the √7a0 × √3a0 CDW order against the Lifshitz transition points to the key role of electron-phonon interactions in stabilizing the CDW state. Our work clarifies a rare example of a CDW-driven MIT in quasi-2D materials and establishes cation intercalation as an effective pathway for tuning both the dimensionality and the carrier concentration without inducing strain or disorder.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信