多壳中空球形高熵氧化物作为稳定锂金属电池的隔膜改性层。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hui Liu, Bo Jin*, Nan Gao* and Qing Jiang, 
{"title":"多壳中空球形高熵氧化物作为稳定锂金属电池的隔膜改性层。","authors":"Hui Liu,&nbsp;Bo Jin*,&nbsp;Nan Gao* and Qing Jiang,&nbsp;","doi":"10.1021/acs.nanolett.5c01049","DOIUrl":null,"url":null,"abstract":"<p >Lithium–metal batteries (LMBs) have received widespread publicity because of their preeminent energy density. However, lithium–metal anodes (LMAs) face abysmal problems including dendrite growth and violent interfacial side reactions, which sorely hinder further progress of LMBs. Here, a well-designed (CoZnNiMnFe)<sub>3</sub>O<sub>4</sub> high entropy oxide with a multishelled hollow spherical shape (HHEO) is first developed as a functionalized layer to modify a commercial polypropylene (PP) separator (named as HHEO-PP). Based on high ionic conductivity and excellent electrolyte wettability, the HHEO-PP separator achieves fast Li<sup>+</sup> diffusion and homogenized Li<sup>+</sup> flux. Therefore, half cells and symmetric cells based on HHEO-PP obtain high Coulombic efficiency (CE) and long lifespan. Li||LiFePO<sub>4</sub> (Li||LFP) full cell including HHEO-PP stably circulates 1000 cycles with a CE of 99% at 2 C. These findings strongly testify the sterling performance of HHEO-PP and expand the path for high entropy oxide functionalized separators for other alkali metal batteries.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 31","pages":"11768–11775"},"PeriodicalIF":9.1000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multishelled Hollow Spherical High Entropy Oxide as a Separator Modification Layer toward Stable Lithium–Metal Batteries\",\"authors\":\"Hui Liu,&nbsp;Bo Jin*,&nbsp;Nan Gao* and Qing Jiang,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c01049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lithium–metal batteries (LMBs) have received widespread publicity because of their preeminent energy density. However, lithium–metal anodes (LMAs) face abysmal problems including dendrite growth and violent interfacial side reactions, which sorely hinder further progress of LMBs. Here, a well-designed (CoZnNiMnFe)<sub>3</sub>O<sub>4</sub> high entropy oxide with a multishelled hollow spherical shape (HHEO) is first developed as a functionalized layer to modify a commercial polypropylene (PP) separator (named as HHEO-PP). Based on high ionic conductivity and excellent electrolyte wettability, the HHEO-PP separator achieves fast Li<sup>+</sup> diffusion and homogenized Li<sup>+</sup> flux. Therefore, half cells and symmetric cells based on HHEO-PP obtain high Coulombic efficiency (CE) and long lifespan. Li||LiFePO<sub>4</sub> (Li||LFP) full cell including HHEO-PP stably circulates 1000 cycles with a CE of 99% at 2 C. These findings strongly testify the sterling performance of HHEO-PP and expand the path for high entropy oxide functionalized separators for other alkali metal batteries.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 31\",\"pages\":\"11768–11775\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01049\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01049","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂金属电池(lmb)因其卓越的能量密度而受到广泛的宣传。然而,锂金属阳极(LMAs)面临着枝晶生长和剧烈的界面副反应等严重问题,严重阻碍了LMAs的进一步发展。本文首先开发了一种设计良好的多壳中空球形(HHEO) (CoZnNiMnFe)3O4高熵氧化物作为功能化层,用于改性商用聚丙烯(PP)分离器(命名为HHEO-PP)。基于高离子电导率和优异的电解质润湿性,HHEO-PP分离器实现了Li+的快速扩散和Li+通量的均匀化。因此,基于HHEO-PP的半电池和对称电池具有较高的库仑效率(CE)和较长的寿命。Li||LiFePO4 (Li||LFP)含HHEO-PP的全电池在2℃下稳定循环1000次,CE达99%。这些研究结果有力地证明了HHEO-PP的优异性能,并为其他碱金属电池的高熵氧化物功能化隔膜开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multishelled Hollow Spherical High Entropy Oxide as a Separator Modification Layer toward Stable Lithium–Metal Batteries

Multishelled Hollow Spherical High Entropy Oxide as a Separator Modification Layer toward Stable Lithium–Metal Batteries

Lithium–metal batteries (LMBs) have received widespread publicity because of their preeminent energy density. However, lithium–metal anodes (LMAs) face abysmal problems including dendrite growth and violent interfacial side reactions, which sorely hinder further progress of LMBs. Here, a well-designed (CoZnNiMnFe)3O4 high entropy oxide with a multishelled hollow spherical shape (HHEO) is first developed as a functionalized layer to modify a commercial polypropylene (PP) separator (named as HHEO-PP). Based on high ionic conductivity and excellent electrolyte wettability, the HHEO-PP separator achieves fast Li+ diffusion and homogenized Li+ flux. Therefore, half cells and symmetric cells based on HHEO-PP obtain high Coulombic efficiency (CE) and long lifespan. Li||LiFePO4 (Li||LFP) full cell including HHEO-PP stably circulates 1000 cycles with a CE of 99% at 2 C. These findings strongly testify the sterling performance of HHEO-PP and expand the path for high entropy oxide functionalized separators for other alkali metal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信