极端约束下单层定义的平面胶体PbSe量子点。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Leon Biesterfeld, Huu Thoai Ngo, Ahmed Addad, Dominik A. Rudolph, Wolfgang Leis, Michael Seitz, Gang Ji, Bruno Grandidier, Christophe Delerue, Jannika Lauth* and Louis Biadala*, 
{"title":"极端约束下单层定义的平面胶体PbSe量子点。","authors":"Leon Biesterfeld,&nbsp;Huu Thoai Ngo,&nbsp;Ahmed Addad,&nbsp;Dominik A. Rudolph,&nbsp;Wolfgang Leis,&nbsp;Michael Seitz,&nbsp;Gang Ji,&nbsp;Bruno Grandidier,&nbsp;Christophe Delerue,&nbsp;Jannika Lauth* and Louis Biadala*,&nbsp;","doi":"10.1021/acs.nanolett.5c02957","DOIUrl":null,"url":null,"abstract":"<p >Colloidal 2D PbX (X = S, Se, Te) nanocrystals are innovative materials pushing the boundaries of quantum confinement by combining crystal thicknesses down to a monolayer with additional confinement in the lateral dimension. These flat PbSe quantum dots (fQDs) exhibit telecommunication band photoluminescence (1.43–0.83 eV), which is highly interesting for fiber optic information processing. With scanning tunneling microscopy/spectroscopy (STM/STS), we probe single-layer-defined fQD populations down to one monolayer, showing an in-gap state free QD-like density of states in excellent agreement with theoretical tight-binding (TB) calculations. Cryogenic ensemble spectra match STS/STM and TB calculations and exhibit the contribution of mono-, bi-, and trilayers to the photoluminescence. Comparing the electronic band gaps with the optical ones, we derive exciton binding energies as high as 600 meV for PbSe monolayers. Our results allow for a target-oriented synthesis of a <b>new class</b> of QDs with record binding energies and precisely tailored optical properties at technologically relevant wavelengths.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 31","pages":"12019–12024"},"PeriodicalIF":9.1000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5c02957","citationCount":"0","resultStr":"{\"title\":\"Monolayer-Defined Flat Colloidal PbSe Quantum Dots in Extreme Confinement\",\"authors\":\"Leon Biesterfeld,&nbsp;Huu Thoai Ngo,&nbsp;Ahmed Addad,&nbsp;Dominik A. Rudolph,&nbsp;Wolfgang Leis,&nbsp;Michael Seitz,&nbsp;Gang Ji,&nbsp;Bruno Grandidier,&nbsp;Christophe Delerue,&nbsp;Jannika Lauth* and Louis Biadala*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c02957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Colloidal 2D PbX (X = S, Se, Te) nanocrystals are innovative materials pushing the boundaries of quantum confinement by combining crystal thicknesses down to a monolayer with additional confinement in the lateral dimension. These flat PbSe quantum dots (fQDs) exhibit telecommunication band photoluminescence (1.43–0.83 eV), which is highly interesting for fiber optic information processing. With scanning tunneling microscopy/spectroscopy (STM/STS), we probe single-layer-defined fQD populations down to one monolayer, showing an in-gap state free QD-like density of states in excellent agreement with theoretical tight-binding (TB) calculations. Cryogenic ensemble spectra match STS/STM and TB calculations and exhibit the contribution of mono-, bi-, and trilayers to the photoluminescence. Comparing the electronic band gaps with the optical ones, we derive exciton binding energies as high as 600 meV for PbSe monolayers. Our results allow for a target-oriented synthesis of a <b>new class</b> of QDs with record binding energies and precisely tailored optical properties at technologically relevant wavelengths.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 31\",\"pages\":\"12019–12024\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5c02957\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02957\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02957","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

胶体二维PbX (X = S, Se, Te)纳米晶体是一种创新材料,通过将晶体厚度降低到单层,并在横向维度上增加额外的限制,突破了量子限制的界限。这些平面PbSe量子点(fQDs)具有1.43 ~ 0.83 eV的通信波段光致发光特性,在光纤信息处理中具有重要的应用价值。通过扫描隧道显微镜/光谱学(STM/STS),我们将单层定义的量子点种群探测到一个单层,显示出与理论紧密结合(TB)计算非常一致的隙内态自由量子点态密度。低温系综光谱与STS/STM和TB计算相匹配,显示了单层、双层和三层对光致发光的贡献。通过比较电子带隙和光带隙,我们得到了PbSe单层的激子结合能高达600 meV。我们的研究结果允许以目标为导向的合成一类新的量子点,这些量子点具有记录的结合能和在技术相关波长下精确定制的光学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monolayer-Defined Flat Colloidal PbSe Quantum Dots in Extreme Confinement

Colloidal 2D PbX (X = S, Se, Te) nanocrystals are innovative materials pushing the boundaries of quantum confinement by combining crystal thicknesses down to a monolayer with additional confinement in the lateral dimension. These flat PbSe quantum dots (fQDs) exhibit telecommunication band photoluminescence (1.43–0.83 eV), which is highly interesting for fiber optic information processing. With scanning tunneling microscopy/spectroscopy (STM/STS), we probe single-layer-defined fQD populations down to one monolayer, showing an in-gap state free QD-like density of states in excellent agreement with theoretical tight-binding (TB) calculations. Cryogenic ensemble spectra match STS/STM and TB calculations and exhibit the contribution of mono-, bi-, and trilayers to the photoluminescence. Comparing the electronic band gaps with the optical ones, we derive exciton binding energies as high as 600 meV for PbSe monolayers. Our results allow for a target-oriented synthesis of a new class of QDs with record binding energies and precisely tailored optical properties at technologically relevant wavelengths.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信