打破原子工程范德华堆多位点边缘催化剂的电化学结垢规律。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ding-Rui Chen, Jeyavelan Muthu, Jui-Teng Chang, Po-Han Lin, Yu-Xiang Chen, Farheen Khurshid, Hao-Ting Chin, Jing Kong, Mario Hofmann, Ya-Ping Hsieh
{"title":"打破原子工程范德华堆多位点边缘催化剂的电化学结垢规律。","authors":"Ding-Rui Chen, Jeyavelan Muthu, Jui-Teng Chang, Po-Han Lin, Yu-Xiang Chen, Farheen Khurshid, Hao-Ting Chin, Jing Kong, Mario Hofmann, Ya-Ping Hsieh","doi":"10.1021/acs.nanolett.5c03027","DOIUrl":null,"url":null,"abstract":"<p><p>Electrocatalysis is key to sustainable energy conversion and storage, but its efficiency is limited by scaling laws between reactant adsorption and desorption. Multisite catalysts promises to overcome these limits, but challenges in fabrication and characterization hinder its validation. We present a platform to study and optimize multisite electrocatalysis. Leveraging van der Waals stacked 2D materials, we create catalytic edge assemblies with precise activity variations, enabling atomically engineered site separation and interaction. This approach enables the identification of multisite catalysts that enhance the hydrogen evolution reaction (HER) beyond single-site Sabatier scaling. Altering atomic-scale site separations reverts the system to single-site mechanisms, highlighting the importance of intermediate transport. Direct evidence of intermediate exchange is provided by electrostatic control of the sites, supported by ab initio simulations. We further engineer bifunctional catalysts for the oxygen evolution reaction (OER) and HER, achieving superior neutral water splitting. These findings enable the catalytic cascade design and complex electrochemical synthesis.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking Electrochemical Scaling Laws in Atomically Engineered van der Waals Stack Multisite Edge Catalysts.\",\"authors\":\"Ding-Rui Chen, Jeyavelan Muthu, Jui-Teng Chang, Po-Han Lin, Yu-Xiang Chen, Farheen Khurshid, Hao-Ting Chin, Jing Kong, Mario Hofmann, Ya-Ping Hsieh\",\"doi\":\"10.1021/acs.nanolett.5c03027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrocatalysis is key to sustainable energy conversion and storage, but its efficiency is limited by scaling laws between reactant adsorption and desorption. Multisite catalysts promises to overcome these limits, but challenges in fabrication and characterization hinder its validation. We present a platform to study and optimize multisite electrocatalysis. Leveraging van der Waals stacked 2D materials, we create catalytic edge assemblies with precise activity variations, enabling atomically engineered site separation and interaction. This approach enables the identification of multisite catalysts that enhance the hydrogen evolution reaction (HER) beyond single-site Sabatier scaling. Altering atomic-scale site separations reverts the system to single-site mechanisms, highlighting the importance of intermediate transport. Direct evidence of intermediate exchange is provided by electrostatic control of the sites, supported by ab initio simulations. We further engineer bifunctional catalysts for the oxygen evolution reaction (OER) and HER, achieving superior neutral water splitting. These findings enable the catalytic cascade design and complex electrochemical synthesis.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c03027\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c03027","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电催化是可持续能量转换和存储的关键,但其效率受到反应物吸附和解吸之间的标度规律的限制。多位点催化剂有望克服这些限制,但在制造和表征方面的挑战阻碍了它的验证。我们提出了一个研究和优化多位点电催化的平台。利用范德华堆叠的二维材料,我们创建了具有精确活性变化的催化边缘组件,实现了原子工程的位点分离和相互作用。这种方法可以识别多位点催化剂,这些催化剂可以增强析氢反应(HER),而不是单位点Sabatier结垢。改变原子尺度的位点分离使系统恢复到单位点机制,突出了中间传输的重要性。中间交换的直接证据是由静电控制的场所提供的,由从头算模拟支持。我们进一步设计了析氧反应(OER)和HER的双功能催化剂,实现了优异的中性水分解。这些发现使催化级联设计和复杂的电化学合成成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breaking Electrochemical Scaling Laws in Atomically Engineered van der Waals Stack Multisite Edge Catalysts.

Electrocatalysis is key to sustainable energy conversion and storage, but its efficiency is limited by scaling laws between reactant adsorption and desorption. Multisite catalysts promises to overcome these limits, but challenges in fabrication and characterization hinder its validation. We present a platform to study and optimize multisite electrocatalysis. Leveraging van der Waals stacked 2D materials, we create catalytic edge assemblies with precise activity variations, enabling atomically engineered site separation and interaction. This approach enables the identification of multisite catalysts that enhance the hydrogen evolution reaction (HER) beyond single-site Sabatier scaling. Altering atomic-scale site separations reverts the system to single-site mechanisms, highlighting the importance of intermediate transport. Direct evidence of intermediate exchange is provided by electrostatic control of the sites, supported by ab initio simulations. We further engineer bifunctional catalysts for the oxygen evolution reaction (OER) and HER, achieving superior neutral water splitting. These findings enable the catalytic cascade design and complex electrochemical synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信