MatPC:提示大语言模型、晶体结构预测和语义驱动材料设计的第一原则。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiacheng Zhou, Bo Xiao*, Qi Liu, Lifeng Liu and Lei Zhang*, 
{"title":"MatPC:提示大语言模型、晶体结构预测和语义驱动材料设计的第一原则。","authors":"Jiacheng Zhou,&nbsp;Bo Xiao*,&nbsp;Qi Liu,&nbsp;Lifeng Liu and Lei Zhang*,&nbsp;","doi":"10.1021/acsami.5c08809","DOIUrl":null,"url":null,"abstract":"<p >In this study, an AI-guided framework is developed for semantic-driven material design, integrating large language models (LLMs) with first-principles methods and crystal structure prediction (MatPC) to identify novel photovoltaic materials. By utilizing prompt-engineered LLMs, semantic embeddings of material property descriptions are leveraged to identify uncommon materials candidates with strong alignment to desired functionalities. The material discovery pipeline combines LLMs, similarity scoring, dimensional reduction, formula screening, crystal structure prediction, and DFT validation into a cohesive computational workflow. The candidates undergo crystal structure prediction to generate polymorphs using a hybrid genetic algorithm-graph neural network (GA-GNN) approach, followed by validation through DFT calculations on atomic and electronic properties, optical absorption, and theoretical power conversion efficiencies. As a case study, an unconventional Bi<sub>2</sub>WO<sub>6</sub> polymorph is identified as a promising photovoltaic material, with its electronic and optical properties thoroughly analyzed via first-principles calculations. Our study presents an efficient material discovery pipeline leveraging large language models (LLMs) to accelerate the material design process.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 31","pages":"44528–44540"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MatPC: Prompting Large Language Model, Crystal Structure Prediction, and First-Principles for Semantic-Driven Material Design\",\"authors\":\"Jiacheng Zhou,&nbsp;Bo Xiao*,&nbsp;Qi Liu,&nbsp;Lifeng Liu and Lei Zhang*,&nbsp;\",\"doi\":\"10.1021/acsami.5c08809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, an AI-guided framework is developed for semantic-driven material design, integrating large language models (LLMs) with first-principles methods and crystal structure prediction (MatPC) to identify novel photovoltaic materials. By utilizing prompt-engineered LLMs, semantic embeddings of material property descriptions are leveraged to identify uncommon materials candidates with strong alignment to desired functionalities. The material discovery pipeline combines LLMs, similarity scoring, dimensional reduction, formula screening, crystal structure prediction, and DFT validation into a cohesive computational workflow. The candidates undergo crystal structure prediction to generate polymorphs using a hybrid genetic algorithm-graph neural network (GA-GNN) approach, followed by validation through DFT calculations on atomic and electronic properties, optical absorption, and theoretical power conversion efficiencies. As a case study, an unconventional Bi<sub>2</sub>WO<sub>6</sub> polymorph is identified as a promising photovoltaic material, with its electronic and optical properties thoroughly analyzed via first-principles calculations. Our study presents an efficient material discovery pipeline leveraging large language models (LLMs) to accelerate the material design process.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 31\",\"pages\":\"44528–44540\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c08809\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c08809","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,开发了一个用于语义驱动材料设计的人工智能指导框架,将大型语言模型(llm)与第一性原理方法和晶体结构预测(MatPC)相结合,以识别新型光伏材料。通过利用即时工程llm,利用材料属性描述的语义嵌入来识别与所需功能强烈匹配的不常见候选材料。材料发现管道将llm、相似性评分、降维、公式筛选、晶体结构预测和DFT验证结合到一个内聚的计算工作流中。候选材料使用混合遗传算法-图神经网络(GA-GNN)方法进行晶体结构预测以产生多晶型,然后通过原子和电子特性、光吸收和理论功率转换效率的DFT计算进行验证。作为一个案例研究,一种非常规的Bi2WO6晶型被确定为一种有前途的光伏材料,并通过第一性原理计算彻底分析了其电子和光学特性。我们的研究提出了一个有效的材料发现管道,利用大型语言模型(llm)来加速材料设计过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MatPC: Prompting Large Language Model, Crystal Structure Prediction, and First-Principles for Semantic-Driven Material Design

MatPC: Prompting Large Language Model, Crystal Structure Prediction, and First-Principles for Semantic-Driven Material Design

In this study, an AI-guided framework is developed for semantic-driven material design, integrating large language models (LLMs) with first-principles methods and crystal structure prediction (MatPC) to identify novel photovoltaic materials. By utilizing prompt-engineered LLMs, semantic embeddings of material property descriptions are leveraged to identify uncommon materials candidates with strong alignment to desired functionalities. The material discovery pipeline combines LLMs, similarity scoring, dimensional reduction, formula screening, crystal structure prediction, and DFT validation into a cohesive computational workflow. The candidates undergo crystal structure prediction to generate polymorphs using a hybrid genetic algorithm-graph neural network (GA-GNN) approach, followed by validation through DFT calculations on atomic and electronic properties, optical absorption, and theoretical power conversion efficiencies. As a case study, an unconventional Bi2WO6 polymorph is identified as a promising photovoltaic material, with its electronic and optical properties thoroughly analyzed via first-principles calculations. Our study presents an efficient material discovery pipeline leveraging large language models (LLMs) to accelerate the material design process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信