基于al介导催化剂工程的多周期GaAs/AlGaAs轴向异质结构纳米线晶体相位控制和室温随机激光。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shan Wang, Bingheng Meng, Zhiyuan Ren, Yubin Kang, Jilong Tang, Xiaohua Wang*, Zhipeng Wei* and Rui Chen*, 
{"title":"基于al介导催化剂工程的多周期GaAs/AlGaAs轴向异质结构纳米线晶体相位控制和室温随机激光。","authors":"Shan Wang,&nbsp;Bingheng Meng,&nbsp;Zhiyuan Ren,&nbsp;Yubin Kang,&nbsp;Jilong Tang,&nbsp;Xiaohua Wang*,&nbsp;Zhipeng Wei* and Rui Chen*,&nbsp;","doi":"10.1021/acsami.5c12589","DOIUrl":null,"url":null,"abstract":"<p >Semiconductor axial heterostructure nanowires (NWs) offer unique advantages for nanophotonics but face challenges in achieving high crystal phase uniformity due to nucleation instability during growth, which limits their optoelectronic performance. In this study, Al-mediated catalyst engineering has been demonstrated to be an effective strategy for crystal phase control in multiperiod GaAs/Al<sub>0.4</sub>Ga<sub>0.6</sub>As axial heterostructure NWs fabricated by molecular beam epitaxy. By systematically varying the GaAs segment growth times (30, 60, 90, and 120 s), it was determined that all samples exhibit distinctive lotus-root morphology, and the 90 s sample (GaAs-90) achieves quasi-pure zincblende (ZB) phase formation. This is attributed to Al incorporation, reducing the Ga droplet size and liquid–vapor surface energy, thereby stabilizing ZB nucleation. Optical characterization reveals that GaAs-90 achieves room-temperature random lasing with a threshold of 55.59 mW/cm<sup>2</sup>. This study elucidates the critical synergy between crystal phase control and axial heterostructure design in achieving efficient NW random lasing, offering a scalable technological framework for on-chip integrated photonics.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 31","pages":"45249–45257"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal Phase Control and Room-Temperature Random Lasing in Multiperiod GaAs/AlGaAs Axial Heterostructure Nanowires via Al-Mediated Catalyst Engineering\",\"authors\":\"Shan Wang,&nbsp;Bingheng Meng,&nbsp;Zhiyuan Ren,&nbsp;Yubin Kang,&nbsp;Jilong Tang,&nbsp;Xiaohua Wang*,&nbsp;Zhipeng Wei* and Rui Chen*,&nbsp;\",\"doi\":\"10.1021/acsami.5c12589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Semiconductor axial heterostructure nanowires (NWs) offer unique advantages for nanophotonics but face challenges in achieving high crystal phase uniformity due to nucleation instability during growth, which limits their optoelectronic performance. In this study, Al-mediated catalyst engineering has been demonstrated to be an effective strategy for crystal phase control in multiperiod GaAs/Al<sub>0.4</sub>Ga<sub>0.6</sub>As axial heterostructure NWs fabricated by molecular beam epitaxy. By systematically varying the GaAs segment growth times (30, 60, 90, and 120 s), it was determined that all samples exhibit distinctive lotus-root morphology, and the 90 s sample (GaAs-90) achieves quasi-pure zincblende (ZB) phase formation. This is attributed to Al incorporation, reducing the Ga droplet size and liquid–vapor surface energy, thereby stabilizing ZB nucleation. Optical characterization reveals that GaAs-90 achieves room-temperature random lasing with a threshold of 55.59 mW/cm<sup>2</sup>. This study elucidates the critical synergy between crystal phase control and axial heterostructure design in achieving efficient NW random lasing, offering a scalable technological framework for on-chip integrated photonics.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 31\",\"pages\":\"45249–45257\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c12589\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c12589","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

半导体轴向异质结构纳米线为纳米光子学提供了独特的优势,但由于生长过程中的成核不稳定,在实现高晶相均匀性方面面临挑战,这限制了其光电性能。在本研究中,al介导的催化剂工程已被证明是分子束外延制备多周期GaAs/Al0.4Ga0.6As轴向异质结构NWs晶体相位控制的有效策略。通过系统地改变GaAs段生长时间(30,60,90,120s),确定了所有样品都呈现出独特的藕状形态,并且90 s样品(GaAs-90)实现了准纯的ZB相形成。这是由于Al的掺入,减小了Ga液滴的尺寸和液-气表面能,从而稳定了ZB成核。光学表征表明,GaAs-90实现了室温随机激光,阈值为55.59 mW/cm2。本研究阐明了晶体相位控制和轴向异质结构设计在实现高效NW随机激光中的关键协同作用,为片上集成光子学提供了可扩展的技术框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crystal Phase Control and Room-Temperature Random Lasing in Multiperiod GaAs/AlGaAs Axial Heterostructure Nanowires via Al-Mediated Catalyst Engineering

Crystal Phase Control and Room-Temperature Random Lasing in Multiperiod GaAs/AlGaAs Axial Heterostructure Nanowires via Al-Mediated Catalyst Engineering

Semiconductor axial heterostructure nanowires (NWs) offer unique advantages for nanophotonics but face challenges in achieving high crystal phase uniformity due to nucleation instability during growth, which limits their optoelectronic performance. In this study, Al-mediated catalyst engineering has been demonstrated to be an effective strategy for crystal phase control in multiperiod GaAs/Al0.4Ga0.6As axial heterostructure NWs fabricated by molecular beam epitaxy. By systematically varying the GaAs segment growth times (30, 60, 90, and 120 s), it was determined that all samples exhibit distinctive lotus-root morphology, and the 90 s sample (GaAs-90) achieves quasi-pure zincblende (ZB) phase formation. This is attributed to Al incorporation, reducing the Ga droplet size and liquid–vapor surface energy, thereby stabilizing ZB nucleation. Optical characterization reveals that GaAs-90 achieves room-temperature random lasing with a threshold of 55.59 mW/cm2. This study elucidates the critical synergy between crystal phase control and axial heterostructure design in achieving efficient NW random lasing, offering a scalable technological framework for on-chip integrated photonics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信