高性能柔性全固态超级电容器中W、V、Co掺杂MoSe2的比较研究

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-07-30 DOI:10.1039/D5RA03192C
Pewe-u Marhu and Vijeth H.
{"title":"高性能柔性全固态超级电容器中W、V、Co掺杂MoSe2的比较研究","authors":"Pewe-u Marhu and Vijeth H.","doi":"10.1039/D5RA03192C","DOIUrl":null,"url":null,"abstract":"<p >The importance of supercapacitor electrode materials and devices undoubtedly stands out in relation to energy storage devices. Selecting a suitable electrode material is crucial for characterization and electrochemical studies. Herein, we report a one-step hydrothermal strategy for the fabrication of molybdenum diselenide (MoSe<small><sub>2</sub></small>) and 2% tungsten-, vanadium- and cobalt-doped MoSe<small><sub>2</sub></small>, along with characterization. The structural and morphological changes in the various nanocomposites were confirmed by powder X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectra. Electrochemical studies reveal significant improvement in specific capacitance, with the Co@MoSe<small><sub>2</sub></small> electrode exhibiting the highest specific capacitance of 518 F g<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small> over a potential window of 0.7 V in 2 M KOH electrolyte solution. The fabricated symmetric supercapacitor device (SSD) delivered a specific capacitance of 127 F g<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small> over a potential window of 1.4 V. It achieved a maximum energy density of 34.54 W h kg<small><sup>−1</sup></small> with a power density of 700 W kg<small><sup>−1</sup></small>. The device demonstrated excellent durability, with cycling stability of 80% even after 10 000 cycles. The results obtained are highly promising, indicating that these materials hold significant potential for commercial applications in energy storage devices.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 33","pages":" 26830-26842"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra03192c?page=search","citationCount":"0","resultStr":"{\"title\":\"A comparative study of W, V, and Co doping in MoSe2 for high-performance flexible all-solid-state supercapacitors\",\"authors\":\"Pewe-u Marhu and Vijeth H.\",\"doi\":\"10.1039/D5RA03192C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The importance of supercapacitor electrode materials and devices undoubtedly stands out in relation to energy storage devices. Selecting a suitable electrode material is crucial for characterization and electrochemical studies. Herein, we report a one-step hydrothermal strategy for the fabrication of molybdenum diselenide (MoSe<small><sub>2</sub></small>) and 2% tungsten-, vanadium- and cobalt-doped MoSe<small><sub>2</sub></small>, along with characterization. The structural and morphological changes in the various nanocomposites were confirmed by powder X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectra. Electrochemical studies reveal significant improvement in specific capacitance, with the Co@MoSe<small><sub>2</sub></small> electrode exhibiting the highest specific capacitance of 518 F g<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small> over a potential window of 0.7 V in 2 M KOH electrolyte solution. The fabricated symmetric supercapacitor device (SSD) delivered a specific capacitance of 127 F g<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small> over a potential window of 1.4 V. It achieved a maximum energy density of 34.54 W h kg<small><sup>−1</sup></small> with a power density of 700 W kg<small><sup>−1</sup></small>. The device demonstrated excellent durability, with cycling stability of 80% even after 10 000 cycles. The results obtained are highly promising, indicating that these materials hold significant potential for commercial applications in energy storage devices.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 33\",\"pages\":\" 26830-26842\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra03192c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra03192c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra03192c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超级电容器电极材料和器件的重要性在储能器件中无疑是突出的。选择合适的电极材料对表征和电化学研究至关重要。在此,我们报告了一步水热方法制备二硒化钼(MoSe2)和2%掺杂钨、钒和钴的MoSe2,并进行了表征。通过粉末x射线衍射、拉曼光谱、扫描电子显微镜、透射电子显微镜和x射线光电子能谱等手段证实了纳米复合材料的结构和形态变化。电化学研究表明,在2 M KOH电解质溶液中,Co@MoSe2电极在1 A g−1电位窗口为0.7 V时,比电容最高,为518 F g−1。所制备的对称超级电容器件(SSD)在1 a g−1电压下,在1.4 V的电位窗口上提供了127 F g−1的比电容。最大能量密度为34.54 W h kg−1,功率密度为700 W kg−1。该装置表现出优异的耐用性,即使在10,000次循环后,循环稳定性仍为80%。获得的结果非常有希望,表明这些材料在储能设备中具有巨大的商业应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A comparative study of W, V, and Co doping in MoSe2 for high-performance flexible all-solid-state supercapacitors

A comparative study of W, V, and Co doping in MoSe2 for high-performance flexible all-solid-state supercapacitors

The importance of supercapacitor electrode materials and devices undoubtedly stands out in relation to energy storage devices. Selecting a suitable electrode material is crucial for characterization and electrochemical studies. Herein, we report a one-step hydrothermal strategy for the fabrication of molybdenum diselenide (MoSe2) and 2% tungsten-, vanadium- and cobalt-doped MoSe2, along with characterization. The structural and morphological changes in the various nanocomposites were confirmed by powder X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectra. Electrochemical studies reveal significant improvement in specific capacitance, with the Co@MoSe2 electrode exhibiting the highest specific capacitance of 518 F g−1 at 1 A g−1 over a potential window of 0.7 V in 2 M KOH electrolyte solution. The fabricated symmetric supercapacitor device (SSD) delivered a specific capacitance of 127 F g−1 at 1 A g−1 over a potential window of 1.4 V. It achieved a maximum energy density of 34.54 W h kg−1 with a power density of 700 W kg−1. The device demonstrated excellent durability, with cycling stability of 80% even after 10 000 cycles. The results obtained are highly promising, indicating that these materials hold significant potential for commercial applications in energy storage devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信