{"title":"基于tfln的紧凑型同步极化等功率分束集成器件的优化设计与仿真","authors":"Wenxuan Pei;Zhen Zhou;Xinyu Li;Yang Lu;Wentao Li;Anxu Huang;Di Feng;Hongchen Jiao;Lishuang Feng","doi":"10.1109/JPHOT.2025.3590348","DOIUrl":null,"url":null,"abstract":"We present a compact thin-film lithium niobate integrated device simultaneously achieving high polarization extinction ratio and equal-power beam splitting, using two optimized oppositely-tapered graded-slope mode converters monolithically integrated with a multimode interference coupler. The converter’s geometric profile is designed through a developed analytical method that evaluates local mode conversion efficiency, enabling flexible geometry customization for diverse applications. Based on this analytical method, the performance simulations and optimization are presented. The proposed integrated device’s high extinction ratio, broad bandwidth, and fabrication tolerance show particular promise for precision optical sensing applications including fiber-optic gyroscopes.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 4","pages":"1-7"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11083596","citationCount":"0","resultStr":"{\"title\":\"Optimized Design and Simulation of a Compact TFLN-Based Integrated Device for Simultaneous Polarizing and Equal-Power Beam Splitting\",\"authors\":\"Wenxuan Pei;Zhen Zhou;Xinyu Li;Yang Lu;Wentao Li;Anxu Huang;Di Feng;Hongchen Jiao;Lishuang Feng\",\"doi\":\"10.1109/JPHOT.2025.3590348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a compact thin-film lithium niobate integrated device simultaneously achieving high polarization extinction ratio and equal-power beam splitting, using two optimized oppositely-tapered graded-slope mode converters monolithically integrated with a multimode interference coupler. The converter’s geometric profile is designed through a developed analytical method that evaluates local mode conversion efficiency, enabling flexible geometry customization for diverse applications. Based on this analytical method, the performance simulations and optimization are presented. The proposed integrated device’s high extinction ratio, broad bandwidth, and fabrication tolerance show particular promise for precision optical sensing applications including fiber-optic gyroscopes.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"17 4\",\"pages\":\"1-7\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11083596\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11083596/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11083596/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimized Design and Simulation of a Compact TFLN-Based Integrated Device for Simultaneous Polarizing and Equal-Power Beam Splitting
We present a compact thin-film lithium niobate integrated device simultaneously achieving high polarization extinction ratio and equal-power beam splitting, using two optimized oppositely-tapered graded-slope mode converters monolithically integrated with a multimode interference coupler. The converter’s geometric profile is designed through a developed analytical method that evaluates local mode conversion efficiency, enabling flexible geometry customization for diverse applications. Based on this analytical method, the performance simulations and optimization are presented. The proposed integrated device’s high extinction ratio, broad bandwidth, and fabrication tolerance show particular promise for precision optical sensing applications including fiber-optic gyroscopes.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.