hybrid -GR4J:结合GR4J和深度学习的混合水文模型

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mingbo Sun , Baowei Yan , Xuerui Zhou , Jianbo Chang , Shixiong Du
{"title":"hybrid -GR4J:结合GR4J和深度学习的混合水文模型","authors":"Mingbo Sun ,&nbsp;Baowei Yan ,&nbsp;Xuerui Zhou ,&nbsp;Jianbo Chang ,&nbsp;Shixiong Du","doi":"10.1016/j.envsoft.2025.106636","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning models have shown outstanding performance in hydrological modeling but are often questioned for their “black-box” nature. To address this issue, this study proposes Hybrid-GR4J, a hybrid model that embeds the structure of the GR4J hydrological model into a physics-constrained recurrent neural network, enabling end-to-end training within the NODE framework. The model is evaluated using daily meteorological inputs across 569 catchments from the CAMELS-US dataset. Results indicate that Hybrid-GR4J achieves average NSE and KGE scores of 0.59 and 0.63, representing improvements of 23.52 % over RNN and 36.58 % over GR4J, respectively. Moreover, the model exhibits strong robustness under various climatic conditions and training data lengths. This study confirms the effectiveness of structurally embedded hybrid modeling in improving runoff simulation accuracy and provides a transferable framework for integrating physical knowledge with data-driven approaches.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"193 ","pages":"Article 106636"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid-GR4J: A hybrid hydrological model integrating GR4J and deep learning\",\"authors\":\"Mingbo Sun ,&nbsp;Baowei Yan ,&nbsp;Xuerui Zhou ,&nbsp;Jianbo Chang ,&nbsp;Shixiong Du\",\"doi\":\"10.1016/j.envsoft.2025.106636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep learning models have shown outstanding performance in hydrological modeling but are often questioned for their “black-box” nature. To address this issue, this study proposes Hybrid-GR4J, a hybrid model that embeds the structure of the GR4J hydrological model into a physics-constrained recurrent neural network, enabling end-to-end training within the NODE framework. The model is evaluated using daily meteorological inputs across 569 catchments from the CAMELS-US dataset. Results indicate that Hybrid-GR4J achieves average NSE and KGE scores of 0.59 and 0.63, representing improvements of 23.52 % over RNN and 36.58 % over GR4J, respectively. Moreover, the model exhibits strong robustness under various climatic conditions and training data lengths. This study confirms the effectiveness of structurally embedded hybrid modeling in improving runoff simulation accuracy and provides a transferable framework for integrating physical knowledge with data-driven approaches.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"193 \",\"pages\":\"Article 106636\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225003202\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225003202","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

深度学习模型在水文建模中表现出色,但经常因其“黑箱”性质而受到质疑。为了解决这一问题,本研究提出了hybrid -GR4J,这是一种混合模型,将GR4J水文模型的结构嵌入到物理约束的循环神经网络中,从而在NODE框架内实现端到端训练。该模型使用来自CAMELS-US数据集的569个流域的每日气象输入进行评估。结果表明,Hybrid-GR4J的平均NSE和KGE得分分别为0.59和0.63,比RNN和GR4J分别提高了23.52%和36.58%。此外,该模型在各种气候条件和训练数据长度下均表现出较强的鲁棒性。该研究证实了结构嵌入式混合建模在提高径流模拟精度方面的有效性,并为将物理知识与数据驱动方法相结合提供了一个可转移的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybrid-GR4J: A hybrid hydrological model integrating GR4J and deep learning

Hybrid-GR4J: A hybrid hydrological model integrating GR4J and deep learning
Deep learning models have shown outstanding performance in hydrological modeling but are often questioned for their “black-box” nature. To address this issue, this study proposes Hybrid-GR4J, a hybrid model that embeds the structure of the GR4J hydrological model into a physics-constrained recurrent neural network, enabling end-to-end training within the NODE framework. The model is evaluated using daily meteorological inputs across 569 catchments from the CAMELS-US dataset. Results indicate that Hybrid-GR4J achieves average NSE and KGE scores of 0.59 and 0.63, representing improvements of 23.52 % over RNN and 36.58 % over GR4J, respectively. Moreover, the model exhibits strong robustness under various climatic conditions and training data lengths. This study confirms the effectiveness of structurally embedded hybrid modeling in improving runoff simulation accuracy and provides a transferable framework for integrating physical knowledge with data-driven approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信