基于人工智能的智能电网稳定性预测——基于UCI智能电网稳定性数据集的研究

IF 5.7 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Xuan Wang , XiaoFeng Zhang , Feng Zhou , Xiang Xu
{"title":"基于人工智能的智能电网稳定性预测——基于UCI智能电网稳定性数据集的研究","authors":"Xuan Wang ,&nbsp;XiaoFeng Zhang ,&nbsp;Feng Zhou ,&nbsp;Xiang Xu","doi":"10.1016/j.suscom.2025.101175","DOIUrl":null,"url":null,"abstract":"<div><div>Maintaining the stability of smart grids (SGs) helps ensure that power systems continue to function well and without interruption, as renewable sources and variable demand rise. Conventional ways of monitoring tend to miss the first signs of instability, prompting the need for more intelligent solutions. This work studies the employment of machine learning (ML) to help classify and forecast SG stability, aiming to improve reliability and systems’ operational efficiency. Six algorithms, Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR), and Categorical Boosting (CatBoost), were tested using such robust metrics as accuracy, precision, recall, F1-score, ROC AUC, Log Loss, Cohen Kappa, and Matthews Correlation Coefficient. Performance of the models was increased by using GridSearchCV and Bayesian Optimization (BO) techniques. The finding is that BO-SVM achieved the highest accuracy, precision, recall, F1-score (all by 96.00 %) as well as greatest balanced accuracy and surpassed all the other methods investigated. Moreover, CatBoost and XGBoost had also steady and effective results when used with both optimization techniques. On the other hand, KNN exhibited overfitting and LR failed to capture stability patterns. These results prove that optimized SVM models are very useful for real-time monitoring of superconductor stability. Such models help make wise and prompt decisions which leads to stronger resilience in the smart grid and efficient energy use. Deploying these models under real-time, noisy, and dynamic grid environments for broader applicability would be more beneficial.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"47 ","pages":"Article 101175"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart grid stability prediction using artificial intelligence: A study based on the UCI smart grid stability dataset\",\"authors\":\"Xuan Wang ,&nbsp;XiaoFeng Zhang ,&nbsp;Feng Zhou ,&nbsp;Xiang Xu\",\"doi\":\"10.1016/j.suscom.2025.101175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Maintaining the stability of smart grids (SGs) helps ensure that power systems continue to function well and without interruption, as renewable sources and variable demand rise. Conventional ways of monitoring tend to miss the first signs of instability, prompting the need for more intelligent solutions. This work studies the employment of machine learning (ML) to help classify and forecast SG stability, aiming to improve reliability and systems’ operational efficiency. Six algorithms, Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR), and Categorical Boosting (CatBoost), were tested using such robust metrics as accuracy, precision, recall, F1-score, ROC AUC, Log Loss, Cohen Kappa, and Matthews Correlation Coefficient. Performance of the models was increased by using GridSearchCV and Bayesian Optimization (BO) techniques. The finding is that BO-SVM achieved the highest accuracy, precision, recall, F1-score (all by 96.00 %) as well as greatest balanced accuracy and surpassed all the other methods investigated. Moreover, CatBoost and XGBoost had also steady and effective results when used with both optimization techniques. On the other hand, KNN exhibited overfitting and LR failed to capture stability patterns. These results prove that optimized SVM models are very useful for real-time monitoring of superconductor stability. Such models help make wise and prompt decisions which leads to stronger resilience in the smart grid and efficient energy use. Deploying these models under real-time, noisy, and dynamic grid environments for broader applicability would be more beneficial.</div></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"47 \",\"pages\":\"Article 101175\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210537925000964\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000964","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

随着可再生能源和可变需求的增加,保持智能电网(SGs)的稳定性有助于确保电力系统继续正常运行且不中断。传统的监测方法往往会错过不稳定的最初迹象,这促使人们需要更智能的解决方案。这项工作研究了使用机器学习(ML)来帮助分类和预测SG稳定性,旨在提高可靠性和系统的运行效率。随机森林(RF)、极端梯度增强(XGBoost)、支持向量机(SVM)、k近邻(KNN)、逻辑回归(LR)和分类增强(CatBoost)等六种算法使用准确性、精密度、召回率、f1评分、ROC AUC、对数损失、Cohen Kappa和Matthews相关系数等稳健指标进行了测试。利用GridSearchCV和贝叶斯优化(BO)技术提高了模型的性能。结果表明,BO-SVM的准确率、精密度、查全率、f1分数(均为96.00 %)最高,平衡准确率最高,超过了所有其他方法。此外,CatBoost和XGBoost在使用这两种优化技术时也具有稳定有效的结果。另一方面,KNN表现出过拟合,LR未能捕获稳定模式。这些结果证明了优化后的SVM模型对超导体稳定性的实时监测是非常有用的。这些模型有助于做出明智和迅速的决策,从而增强智能电网的弹性和有效的能源利用。将这些模型部署在实时、嘈杂和动态的网格环境中,以获得更广泛的适用性,这将更有益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart grid stability prediction using artificial intelligence: A study based on the UCI smart grid stability dataset
Maintaining the stability of smart grids (SGs) helps ensure that power systems continue to function well and without interruption, as renewable sources and variable demand rise. Conventional ways of monitoring tend to miss the first signs of instability, prompting the need for more intelligent solutions. This work studies the employment of machine learning (ML) to help classify and forecast SG stability, aiming to improve reliability and systems’ operational efficiency. Six algorithms, Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR), and Categorical Boosting (CatBoost), were tested using such robust metrics as accuracy, precision, recall, F1-score, ROC AUC, Log Loss, Cohen Kappa, and Matthews Correlation Coefficient. Performance of the models was increased by using GridSearchCV and Bayesian Optimization (BO) techniques. The finding is that BO-SVM achieved the highest accuracy, precision, recall, F1-score (all by 96.00 %) as well as greatest balanced accuracy and surpassed all the other methods investigated. Moreover, CatBoost and XGBoost had also steady and effective results when used with both optimization techniques. On the other hand, KNN exhibited overfitting and LR failed to capture stability patterns. These results prove that optimized SVM models are very useful for real-time monitoring of superconductor stability. Such models help make wise and prompt decisions which leads to stronger resilience in the smart grid and efficient energy use. Deploying these models under real-time, noisy, and dynamic grid environments for broader applicability would be more beneficial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Computing-Informatics & Systems
Sustainable Computing-Informatics & Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTUREC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
10.70
自引率
4.40%
发文量
142
期刊介绍: Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信