Brett F. Sanders , Jochen E. Schubert , Eva-Marie H. Martin , Shichen Wang , Michael C. Sukop , Katharine J. Mach
{"title":"考虑地下水相互作用和水工结构的快速洪水淹没模型","authors":"Brett F. Sanders , Jochen E. Schubert , Eva-Marie H. Martin , Shichen Wang , Michael C. Sukop , Katharine J. Mach","doi":"10.1016/j.advwatres.2025.105057","DOIUrl":null,"url":null,"abstract":"<div><div>To efficiently predict flooding caused by intense rainfall (pluvial flooding), many physics-based flood inundation models adopt simplistic parameterizations of infiltration such as the Kostiakov, Horton, Soil Conservation Service and Green-Ampt methods. However, these methods are not explicitly dependent on soil moisture (or the groundwater table height), which is known to strongly influence the amount of runoff generated by rainfall. Models that fully couple surface and groundwater flow equations offer an alternative approach, but require larger amounts of input data and greater computational effort. Here we present a fast flood inundation model that couples two-dimensional shallow-water equations for surface flow with a zero-dimensional, time-dependent groundwater equation to capture sensitivity to groundwater. The model is also configured to account for storm drains, pumping and gates so human influences on flooding can be resolved, and is implemented with a dual-grid finite-volume scheme and with OpenACC directives for execution on graphical processing units (GPUs). With a 1.5 m resolution application across a 1,000 km<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> area in Miami, Florida, where pluvial flooding is sensitive to depth to groundwater and simulation models that accurately reproduce observed flooding are needed to explore and plan response options, we first show that hourly water levels are predicted with a Mean Absolute Error of 8–16 cm across six canal gaging stations where flows are affected by tides, pumping, gate operations, and rainfall runoff. Second, we show high sensitivity of flooding to antecedent groundwater levels: flood extent is predicted to vary by a factor of six when initial depth to groundwater is varied between 10 and 200 cm, an amount that aligns with seasonal changes across the area. And third, we show that the model runs 30 times faster than real time (i.e., model speed = 30) using an NVIDIA V100 GPU. Furthermore, using a 3 m resolution model of Houston, Texas, we benchmark model speeds greater than 20 and 100 for domain sizes of 10,000 or 1,000 km<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>, respectively. The importance of model speed is discussed in the context of flood risk management and adaptation.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"204 ","pages":"Article 105057"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast flood inundation model with groundwater interactions and hydraulic structures\",\"authors\":\"Brett F. Sanders , Jochen E. Schubert , Eva-Marie H. Martin , Shichen Wang , Michael C. Sukop , Katharine J. Mach\",\"doi\":\"10.1016/j.advwatres.2025.105057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To efficiently predict flooding caused by intense rainfall (pluvial flooding), many physics-based flood inundation models adopt simplistic parameterizations of infiltration such as the Kostiakov, Horton, Soil Conservation Service and Green-Ampt methods. However, these methods are not explicitly dependent on soil moisture (or the groundwater table height), which is known to strongly influence the amount of runoff generated by rainfall. Models that fully couple surface and groundwater flow equations offer an alternative approach, but require larger amounts of input data and greater computational effort. Here we present a fast flood inundation model that couples two-dimensional shallow-water equations for surface flow with a zero-dimensional, time-dependent groundwater equation to capture sensitivity to groundwater. The model is also configured to account for storm drains, pumping and gates so human influences on flooding can be resolved, and is implemented with a dual-grid finite-volume scheme and with OpenACC directives for execution on graphical processing units (GPUs). With a 1.5 m resolution application across a 1,000 km<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> area in Miami, Florida, where pluvial flooding is sensitive to depth to groundwater and simulation models that accurately reproduce observed flooding are needed to explore and plan response options, we first show that hourly water levels are predicted with a Mean Absolute Error of 8–16 cm across six canal gaging stations where flows are affected by tides, pumping, gate operations, and rainfall runoff. Second, we show high sensitivity of flooding to antecedent groundwater levels: flood extent is predicted to vary by a factor of six when initial depth to groundwater is varied between 10 and 200 cm, an amount that aligns with seasonal changes across the area. And third, we show that the model runs 30 times faster than real time (i.e., model speed = 30) using an NVIDIA V100 GPU. Furthermore, using a 3 m resolution model of Houston, Texas, we benchmark model speeds greater than 20 and 100 for domain sizes of 10,000 or 1,000 km<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>, respectively. The importance of model speed is discussed in the context of flood risk management and adaptation.</div></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":\"204 \",\"pages\":\"Article 105057\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030917082500171X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030917082500171X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
A fast flood inundation model with groundwater interactions and hydraulic structures
To efficiently predict flooding caused by intense rainfall (pluvial flooding), many physics-based flood inundation models adopt simplistic parameterizations of infiltration such as the Kostiakov, Horton, Soil Conservation Service and Green-Ampt methods. However, these methods are not explicitly dependent on soil moisture (or the groundwater table height), which is known to strongly influence the amount of runoff generated by rainfall. Models that fully couple surface and groundwater flow equations offer an alternative approach, but require larger amounts of input data and greater computational effort. Here we present a fast flood inundation model that couples two-dimensional shallow-water equations for surface flow with a zero-dimensional, time-dependent groundwater equation to capture sensitivity to groundwater. The model is also configured to account for storm drains, pumping and gates so human influences on flooding can be resolved, and is implemented with a dual-grid finite-volume scheme and with OpenACC directives for execution on graphical processing units (GPUs). With a 1.5 m resolution application across a 1,000 km area in Miami, Florida, where pluvial flooding is sensitive to depth to groundwater and simulation models that accurately reproduce observed flooding are needed to explore and plan response options, we first show that hourly water levels are predicted with a Mean Absolute Error of 8–16 cm across six canal gaging stations where flows are affected by tides, pumping, gate operations, and rainfall runoff. Second, we show high sensitivity of flooding to antecedent groundwater levels: flood extent is predicted to vary by a factor of six when initial depth to groundwater is varied between 10 and 200 cm, an amount that aligns with seasonal changes across the area. And third, we show that the model runs 30 times faster than real time (i.e., model speed = 30) using an NVIDIA V100 GPU. Furthermore, using a 3 m resolution model of Houston, Texas, we benchmark model speeds greater than 20 and 100 for domain sizes of 10,000 or 1,000 km, respectively. The importance of model speed is discussed in the context of flood risk management and adaptation.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes