Mingyang Jiang , Jinlong Wang , Yize Li , Ke Zhang , Tao Wang , Zhandong Bo , Shenyi Lu , Raquel Alarcón Rodríguez , Ruqiong Wei , Mingtao Zhu , Christophe Nicot , Gautam Sethi
{"title":"EMT和癌症干细胞:治疗耐药的驱动因素和有希望的治疗靶点","authors":"Mingyang Jiang , Jinlong Wang , Yize Li , Ke Zhang , Tao Wang , Zhandong Bo , Shenyi Lu , Raquel Alarcón Rodríguez , Ruqiong Wei , Mingtao Zhu , Christophe Nicot , Gautam Sethi","doi":"10.1016/j.drup.2025.101276","DOIUrl":null,"url":null,"abstract":"<div><div>Cancer continues to be a primary cause of death, resulting in substantial mortality and illness globally. It remains a significant global health issue, greatly affecting morbidity and mortality across the world. Therapeutic resistance poses a major challenge to cancer treatments, acting as a significant barrier to the effectiveness of both standard and targeted therapies. This resistance develops through various mechanisms that allow tumor cells to adapt to and escape the damaging effects of chemotherapy, radiation, and targeted therapies. Ultimately, this leads to disease recurrence and progression. This review examines the dual roles of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) in promoting chemoresistance and metastasis. EMT is a dynamic and reversible biological process in which epithelial cells acquire mesenchymal characteristics, increasing their invasiveness and resistance to programmed cell death. CSCs are a subset of cancer cells with the ability to self-renew and play a crucial role in tumor relapse and resistance to treatment. EMT and CSCs are closely interconnected, collaboratively enhancing cancer cell plasticity, metastatic ability, and treatment resistance. The initiation of EMT in cancer cells can generate a CSC-like population, which promotes tumor recurrence and spread. This interaction highlights the importance of targeting both EMT and CSC pathways to develop more effective treatment strategies that address treatment resistance and prevent metastasis. Promising approaches include using natural substances, small molecules, and nanotechnology to block critical signaling pathways and interfere with resistance mechanisms. A more thorough understanding of the molecular factors underlying EMT and CSC plasticity is crucial for crafting personalized treatments that target tumor heterogeneity and improve clinical outcomes.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"83 ","pages":"Article 101276"},"PeriodicalIF":21.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EMT and cancer stem cells: Drivers of therapy resistance and promising therapeutic targets\",\"authors\":\"Mingyang Jiang , Jinlong Wang , Yize Li , Ke Zhang , Tao Wang , Zhandong Bo , Shenyi Lu , Raquel Alarcón Rodríguez , Ruqiong Wei , Mingtao Zhu , Christophe Nicot , Gautam Sethi\",\"doi\":\"10.1016/j.drup.2025.101276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cancer continues to be a primary cause of death, resulting in substantial mortality and illness globally. It remains a significant global health issue, greatly affecting morbidity and mortality across the world. Therapeutic resistance poses a major challenge to cancer treatments, acting as a significant barrier to the effectiveness of both standard and targeted therapies. This resistance develops through various mechanisms that allow tumor cells to adapt to and escape the damaging effects of chemotherapy, radiation, and targeted therapies. Ultimately, this leads to disease recurrence and progression. This review examines the dual roles of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) in promoting chemoresistance and metastasis. EMT is a dynamic and reversible biological process in which epithelial cells acquire mesenchymal characteristics, increasing their invasiveness and resistance to programmed cell death. CSCs are a subset of cancer cells with the ability to self-renew and play a crucial role in tumor relapse and resistance to treatment. EMT and CSCs are closely interconnected, collaboratively enhancing cancer cell plasticity, metastatic ability, and treatment resistance. The initiation of EMT in cancer cells can generate a CSC-like population, which promotes tumor recurrence and spread. This interaction highlights the importance of targeting both EMT and CSC pathways to develop more effective treatment strategies that address treatment resistance and prevent metastasis. Promising approaches include using natural substances, small molecules, and nanotechnology to block critical signaling pathways and interfere with resistance mechanisms. A more thorough understanding of the molecular factors underlying EMT and CSC plasticity is crucial for crafting personalized treatments that target tumor heterogeneity and improve clinical outcomes.</div></div>\",\"PeriodicalId\":51022,\"journal\":{\"name\":\"Drug Resistance Updates\",\"volume\":\"83 \",\"pages\":\"Article 101276\"},\"PeriodicalIF\":21.7000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Resistance Updates\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1368764625000792\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Resistance Updates","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1368764625000792","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
EMT and cancer stem cells: Drivers of therapy resistance and promising therapeutic targets
Cancer continues to be a primary cause of death, resulting in substantial mortality and illness globally. It remains a significant global health issue, greatly affecting morbidity and mortality across the world. Therapeutic resistance poses a major challenge to cancer treatments, acting as a significant barrier to the effectiveness of both standard and targeted therapies. This resistance develops through various mechanisms that allow tumor cells to adapt to and escape the damaging effects of chemotherapy, radiation, and targeted therapies. Ultimately, this leads to disease recurrence and progression. This review examines the dual roles of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) in promoting chemoresistance and metastasis. EMT is a dynamic and reversible biological process in which epithelial cells acquire mesenchymal characteristics, increasing their invasiveness and resistance to programmed cell death. CSCs are a subset of cancer cells with the ability to self-renew and play a crucial role in tumor relapse and resistance to treatment. EMT and CSCs are closely interconnected, collaboratively enhancing cancer cell plasticity, metastatic ability, and treatment resistance. The initiation of EMT in cancer cells can generate a CSC-like population, which promotes tumor recurrence and spread. This interaction highlights the importance of targeting both EMT and CSC pathways to develop more effective treatment strategies that address treatment resistance and prevent metastasis. Promising approaches include using natural substances, small molecules, and nanotechnology to block critical signaling pathways and interfere with resistance mechanisms. A more thorough understanding of the molecular factors underlying EMT and CSC plasticity is crucial for crafting personalized treatments that target tumor heterogeneity and improve clinical outcomes.
期刊介绍:
Drug Resistance Updates serves as a platform for publishing original research, commentary, and expert reviews on significant advancements in drug resistance related to infectious diseases and cancer. It encompasses diverse disciplines such as molecular biology, biochemistry, cell biology, pharmacology, microbiology, preclinical therapeutics, oncology, and clinical medicine. The journal addresses both basic research and clinical aspects of drug resistance, providing insights into novel drugs and strategies to overcome resistance. Original research articles are welcomed, and review articles are authored by leaders in the field by invitation.
Articles are written by leaders in the field, in response to an invitation from the Editors, and are peer-reviewed prior to publication. Articles are clear, readable, and up-to-date, suitable for a multidisciplinary readership and include schematic diagrams and other illustrations conveying the major points of the article. The goal is to highlight recent areas of growth and put them in perspective.
*Expert reviews in clinical and basic drug resistance research in oncology and infectious disease
*Describes emerging technologies and therapies, particularly those that overcome drug resistance
*Emphasises common themes in microbial and cancer research