太阳能电动汽车智能停车基础设施的预测能源调度

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Saba Askari Noghani, Paolo Scarabaggio, Raffaele Carli, Mariagrazia Dotoli
{"title":"太阳能电动汽车智能停车基础设施的预测能源调度","authors":"Saba Askari Noghani,&nbsp;Paolo Scarabaggio,&nbsp;Raffaele Carli,&nbsp;Mariagrazia Dotoli","doi":"10.1016/j.ifacsc.2025.100322","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel model predictive control framework for managing energy flow in smart parking infrastructures with renewable energy facilities, electric vehicles, and solar-powered electric vehicles. The proposed control framework minimizes the energy costs for the parking lot operators, ensuring the user-defined charge levels for vehicles at departure, and protecting the charging infrastructure during operation. Field validation on Lonsdale Street, Melbourne (Australia)—using real data on vehicle behavior, solar irradiance, and energy prices—shows significant grid load reduction even with partial solar production. Compared to a rule-based strategy, the MPC approach reduces operational costs by 15.32% and energy demand by 6.12%. Lastly, we show that the proposed framework is robust under forecast uncertainty, supporting its practical deployment in dynamic real-world environments.</div></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"33 ","pages":"Article 100322"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive energy scheduling of smart parking infrastructure with solar-powered electric vehicles\",\"authors\":\"Saba Askari Noghani,&nbsp;Paolo Scarabaggio,&nbsp;Raffaele Carli,&nbsp;Mariagrazia Dotoli\",\"doi\":\"10.1016/j.ifacsc.2025.100322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a novel model predictive control framework for managing energy flow in smart parking infrastructures with renewable energy facilities, electric vehicles, and solar-powered electric vehicles. The proposed control framework minimizes the energy costs for the parking lot operators, ensuring the user-defined charge levels for vehicles at departure, and protecting the charging infrastructure during operation. Field validation on Lonsdale Street, Melbourne (Australia)—using real data on vehicle behavior, solar irradiance, and energy prices—shows significant grid load reduction even with partial solar production. Compared to a rule-based strategy, the MPC approach reduces operational costs by 15.32% and energy demand by 6.12%. Lastly, we show that the proposed framework is robust under forecast uncertainty, supporting its practical deployment in dynamic real-world environments.</div></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"33 \",\"pages\":\"Article 100322\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601825000288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601825000288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的模型预测控制框架,用于管理可再生能源设施、电动汽车和太阳能电动汽车的智能停车基础设施中的能量流。所提出的控制框架最大限度地降低了停车场运营商的能源成本,确保了车辆出发时用户自定义的充电水平,并在运行期间保护了充电基础设施。在澳大利亚墨尔本Lonsdale街进行的现场验证——使用车辆行为、太阳辐照度和能源价格的真实数据——显示,即使部分太阳能发电,电网负荷也显著减少。与基于规则的策略相比,MPC方法可降低15.32%的运营成本和6.12%的能源需求。最后,我们证明了所提出的框架在预测不确定性下具有鲁棒性,支持其在动态现实环境中的实际部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive energy scheduling of smart parking infrastructure with solar-powered electric vehicles
This paper presents a novel model predictive control framework for managing energy flow in smart parking infrastructures with renewable energy facilities, electric vehicles, and solar-powered electric vehicles. The proposed control framework minimizes the energy costs for the parking lot operators, ensuring the user-defined charge levels for vehicles at departure, and protecting the charging infrastructure during operation. Field validation on Lonsdale Street, Melbourne (Australia)—using real data on vehicle behavior, solar irradiance, and energy prices—shows significant grid load reduction even with partial solar production. Compared to a rule-based strategy, the MPC approach reduces operational costs by 15.32% and energy demand by 6.12%. Lastly, we show that the proposed framework is robust under forecast uncertainty, supporting its practical deployment in dynamic real-world environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信