Jian-Dong Zhou , Yu-Hao Tang , Jia-Jun Wu , Juan-Cheng Yang , Ming-Jiu Ni
{"title":"液态金属GaInSn混合对流的实验研究","authors":"Jian-Dong Zhou , Yu-Hao Tang , Jia-Jun Wu , Juan-Cheng Yang , Ming-Jiu Ni","doi":"10.1016/j.ijheatfluidflow.2025.109995","DOIUrl":null,"url":null,"abstract":"<div><div>Mixed convection is of great importance for the thermal–hydraulic characteristics of nuclear fast reactors and nuclear fusion blankets. In the present study, the liquid metal mixed convection is experimentally studied by adopting GaInSn, which remains in a liquid state at room temperature. The test section is a duct with a cross-area of 50 mm × 50 mm and a length of 3 m made of stainless steel. By installing the thermocouples, flow meter, and differential pressure transducers on the experimental system, the corresponding flow and heat transfer characteristics can be identified with considering the influence of flow rate and heat flux density. The present results show that, compared to forced convection, the Nusselt number (<em>Nu</em>) of mixed convection decreased first and then increased with the increase of Reynolds number (<em>Re</em>). There exists a critical <em>Re</em><sub>c</sub> when <em>Nu</em> reaches a minimum value, and <em>Re</em><sub>c</sub> increases with the increase of the Grashof number (<em>Gr</em>). It is a consequence of flow layering, plume sweeping, and bulk heat entrapment, due to the competition between buoyancy and shear forces, which can be described by the Richardson number (<em>Ri</em>). The change tendency of <em>Nu</em> as a function of <em>Ri</em> indicates that the threshold value of <em>Ri</em><sub>c</sub> is around 1. An empirical correlation is obtained to predict <em>Nu</em> for GaInSn mixed convection when <em>Pe</em> < 1000. The variation of the local <em>Nu</em> in flow direction indicates the existence of the onset of mixed convection in the flow direction, which is further confirmed by the power spectral density.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"116 ","pages":"Article 109995"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on mixed convection of liquid metal GaInSn\",\"authors\":\"Jian-Dong Zhou , Yu-Hao Tang , Jia-Jun Wu , Juan-Cheng Yang , Ming-Jiu Ni\",\"doi\":\"10.1016/j.ijheatfluidflow.2025.109995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mixed convection is of great importance for the thermal–hydraulic characteristics of nuclear fast reactors and nuclear fusion blankets. In the present study, the liquid metal mixed convection is experimentally studied by adopting GaInSn, which remains in a liquid state at room temperature. The test section is a duct with a cross-area of 50 mm × 50 mm and a length of 3 m made of stainless steel. By installing the thermocouples, flow meter, and differential pressure transducers on the experimental system, the corresponding flow and heat transfer characteristics can be identified with considering the influence of flow rate and heat flux density. The present results show that, compared to forced convection, the Nusselt number (<em>Nu</em>) of mixed convection decreased first and then increased with the increase of Reynolds number (<em>Re</em>). There exists a critical <em>Re</em><sub>c</sub> when <em>Nu</em> reaches a minimum value, and <em>Re</em><sub>c</sub> increases with the increase of the Grashof number (<em>Gr</em>). It is a consequence of flow layering, plume sweeping, and bulk heat entrapment, due to the competition between buoyancy and shear forces, which can be described by the Richardson number (<em>Ri</em>). The change tendency of <em>Nu</em> as a function of <em>Ri</em> indicates that the threshold value of <em>Ri</em><sub>c</sub> is around 1. An empirical correlation is obtained to predict <em>Nu</em> for GaInSn mixed convection when <em>Pe</em> < 1000. The variation of the local <em>Nu</em> in flow direction indicates the existence of the onset of mixed convection in the flow direction, which is further confirmed by the power spectral density.</div></div>\",\"PeriodicalId\":335,\"journal\":{\"name\":\"International Journal of Heat and Fluid Flow\",\"volume\":\"116 \",\"pages\":\"Article 109995\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142727X2500253X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X2500253X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental study on mixed convection of liquid metal GaInSn
Mixed convection is of great importance for the thermal–hydraulic characteristics of nuclear fast reactors and nuclear fusion blankets. In the present study, the liquid metal mixed convection is experimentally studied by adopting GaInSn, which remains in a liquid state at room temperature. The test section is a duct with a cross-area of 50 mm × 50 mm and a length of 3 m made of stainless steel. By installing the thermocouples, flow meter, and differential pressure transducers on the experimental system, the corresponding flow and heat transfer characteristics can be identified with considering the influence of flow rate and heat flux density. The present results show that, compared to forced convection, the Nusselt number (Nu) of mixed convection decreased first and then increased with the increase of Reynolds number (Re). There exists a critical Rec when Nu reaches a minimum value, and Rec increases with the increase of the Grashof number (Gr). It is a consequence of flow layering, plume sweeping, and bulk heat entrapment, due to the competition between buoyancy and shear forces, which can be described by the Richardson number (Ri). The change tendency of Nu as a function of Ri indicates that the threshold value of Ric is around 1. An empirical correlation is obtained to predict Nu for GaInSn mixed convection when Pe < 1000. The variation of the local Nu in flow direction indicates the existence of the onset of mixed convection in the flow direction, which is further confirmed by the power spectral density.
期刊介绍:
The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows.
Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.