基于改进导热模型和达西定律的混合纳米流体在拉伸片上的斜滞止点流动

IF 1.1 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Z. Abbas , J. Hasnain , M.Y. Rafiq , M.A. Saeed , H. Shahzad
{"title":"基于改进导热模型和达西定律的混合纳米流体在拉伸片上的斜滞止点流动","authors":"Z. Abbas ,&nbsp;J. Hasnain ,&nbsp;M.Y. Rafiq ,&nbsp;M.A. Saeed ,&nbsp;H. Shahzad","doi":"10.1016/j.kjs.2025.100481","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid nanofluids have demonstrated improved thermal performance and stability across a wide range of applications, including thermal efficiency systems, solar collectors, energy production, nuclear processes, and enhanced heat transfer. Motivated by these promising applications, this study investigates two-dimensional incompressible oblique stagnation point flow over a stretching/shrinking sheet embedded in a porous medium. The analysis compares two widely used thermal conductivity models, the Yamada-Ota and Xue models, for hybrid nanofluids composed of graphene oxide (<span><math><mrow><mi>G</mi><mi>O</mi></mrow></math></span>) and iron oxide, magnetite (<span><math><mrow><mi>F</mi><msub><mi>e</mi><mn>3</mn></msub><msub><mi>O</mi><mn>4</mn></msub></mrow></math></span>) nanoparticles dispersed in a non-Newtonian engine oil (<em>EO</em>) base fluid. Additionally, the influences of thermal radiation, heat generation/absorption, and chemical reactions are incorporated to explore the heat and mass transfer characteristics. The governing equations are transformed into a system of ordinary differential equations using similarity transformations, and the resulting system is solved numerically via the fourth-order Runge-Kutta-Fehlberg integration method combined with an efficient shooting technique. The results reveal that increasing the magnetic field strength enhances the fluid temperature while reducing its velocity. Higher heat generation parameters lead to intensified thermal distribution, while lower permeability increases velocity instability. Quantitatively, the Xue model demonstrates a higher surface heat transfer rate than the Yamada-Ota model, and a larger Schmidt number reduces mass transfer rates. These insights are particularly valuable for optimizing heat and mass transfer in porous thermal management systems.</div></div>","PeriodicalId":17848,"journal":{"name":"Kuwait Journal of Science","volume":"53 1","pages":"Article 100481"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oblique stagnation point flow of hybrid nanofluid on a stretching sheet with modified thermal conductivity models and Darcy's law\",\"authors\":\"Z. Abbas ,&nbsp;J. Hasnain ,&nbsp;M.Y. Rafiq ,&nbsp;M.A. Saeed ,&nbsp;H. Shahzad\",\"doi\":\"10.1016/j.kjs.2025.100481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hybrid nanofluids have demonstrated improved thermal performance and stability across a wide range of applications, including thermal efficiency systems, solar collectors, energy production, nuclear processes, and enhanced heat transfer. Motivated by these promising applications, this study investigates two-dimensional incompressible oblique stagnation point flow over a stretching/shrinking sheet embedded in a porous medium. The analysis compares two widely used thermal conductivity models, the Yamada-Ota and Xue models, for hybrid nanofluids composed of graphene oxide (<span><math><mrow><mi>G</mi><mi>O</mi></mrow></math></span>) and iron oxide, magnetite (<span><math><mrow><mi>F</mi><msub><mi>e</mi><mn>3</mn></msub><msub><mi>O</mi><mn>4</mn></msub></mrow></math></span>) nanoparticles dispersed in a non-Newtonian engine oil (<em>EO</em>) base fluid. Additionally, the influences of thermal radiation, heat generation/absorption, and chemical reactions are incorporated to explore the heat and mass transfer characteristics. The governing equations are transformed into a system of ordinary differential equations using similarity transformations, and the resulting system is solved numerically via the fourth-order Runge-Kutta-Fehlberg integration method combined with an efficient shooting technique. The results reveal that increasing the magnetic field strength enhances the fluid temperature while reducing its velocity. Higher heat generation parameters lead to intensified thermal distribution, while lower permeability increases velocity instability. Quantitatively, the Xue model demonstrates a higher surface heat transfer rate than the Yamada-Ota model, and a larger Schmidt number reduces mass transfer rates. These insights are particularly valuable for optimizing heat and mass transfer in porous thermal management systems.</div></div>\",\"PeriodicalId\":17848,\"journal\":{\"name\":\"Kuwait Journal of Science\",\"volume\":\"53 1\",\"pages\":\"Article 100481\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kuwait Journal of Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2307410825001257\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307410825001257","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

混合纳米流体在热效率系统、太阳能集热器、能源生产、核过程和强化传热等广泛应用中表现出了更好的热性能和稳定性。在这些有前景的应用的激励下,本研究研究了嵌入多孔介质的拉伸/收缩薄片上的二维不可压缩斜驻点流动。该分析比较了两种广泛使用的导热模型,即Yamada-Ota和Xue模型,这两种模型是由分散在非牛顿发动机油(EO)基液中的氧化石墨烯(GO)和氧化铁、磁铁矿(Fe3O4)纳米颗粒组成的混合纳米流体。此外,还考虑了热辐射、热产生/吸收和化学反应的影响,以探索传热传质特性。利用相似变换将控制方程转化为常微分方程组,利用四阶Runge-Kutta-Fehlberg积分法结合高效射击技术对控制方程组进行数值求解。结果表明,增大磁场强度,流体温度升高,速度降低;较高的产热参数导致热分布加剧,而较低的渗透率则增加了速度不稳定性。定量地,Xue模型比Yamada-Ota模型显示出更高的表面传热率,更大的施密特数降低了传质率。这些见解对于优化多孔热管理系统中的传热和传质特别有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oblique stagnation point flow of hybrid nanofluid on a stretching sheet with modified thermal conductivity models and Darcy's law
Hybrid nanofluids have demonstrated improved thermal performance and stability across a wide range of applications, including thermal efficiency systems, solar collectors, energy production, nuclear processes, and enhanced heat transfer. Motivated by these promising applications, this study investigates two-dimensional incompressible oblique stagnation point flow over a stretching/shrinking sheet embedded in a porous medium. The analysis compares two widely used thermal conductivity models, the Yamada-Ota and Xue models, for hybrid nanofluids composed of graphene oxide (GO) and iron oxide, magnetite (Fe3O4) nanoparticles dispersed in a non-Newtonian engine oil (EO) base fluid. Additionally, the influences of thermal radiation, heat generation/absorption, and chemical reactions are incorporated to explore the heat and mass transfer characteristics. The governing equations are transformed into a system of ordinary differential equations using similarity transformations, and the resulting system is solved numerically via the fourth-order Runge-Kutta-Fehlberg integration method combined with an efficient shooting technique. The results reveal that increasing the magnetic field strength enhances the fluid temperature while reducing its velocity. Higher heat generation parameters lead to intensified thermal distribution, while lower permeability increases velocity instability. Quantitatively, the Xue model demonstrates a higher surface heat transfer rate than the Yamada-Ota model, and a larger Schmidt number reduces mass transfer rates. These insights are particularly valuable for optimizing heat and mass transfer in porous thermal management systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kuwait Journal of Science
Kuwait Journal of Science MULTIDISCIPLINARY SCIENCES-
CiteScore
1.60
自引率
28.60%
发文量
132
期刊介绍: Kuwait Journal of Science (KJS) is indexed and abstracted by major publishing houses such as Chemical Abstract, Science Citation Index, Current contents, Mathematics Abstract, Micribiological Abstracts etc. KJS publishes peer-review articles in various fields of Science including Mathematics, Computer Science, Physics, Statistics, Biology, Chemistry and Earth & Environmental Sciences. In addition, it also aims to bring the results of scientific research carried out under a variety of intellectual traditions and organizations to the attention of specialized scholarly readership. As such, the publisher expects the submission of original manuscripts which contain analysis and solutions about important theoretical, empirical and normative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信