R.G. Yatish, Kondeti Chiranjeevi, Doma Hemanth Kumar, H.M. Raviraj, A.U. Ravi Shankar
{"title":"处理后的生物渣油作为沥青改性剂的初步评价","authors":"R.G. Yatish, Kondeti Chiranjeevi, Doma Hemanth Kumar, H.M. Raviraj, A.U. Ravi Shankar","doi":"10.1016/j.scp.2025.102135","DOIUrl":null,"url":null,"abstract":"<div><div>With the global shift toward sustainable construction practices, the reuse of organic industrial by-products in pavement applications is gaining momentum. Bio-residues, when appropriately treated, can serve as eco-friendly alternatives to conventional binders. This study presents a preliminary investigation into the use of thermally treated Caffeine Spent Residue (CSR) as a partial replacement for bitumen in binder formulations. The CSR, derived from organic industrial waste, underwent thermal pretreatment to improve compatibility with the bituminous phase. The treated CSR was then mixed with bitumen (VG-40) by replacing it at varying levels—0 %, 3 %, 6 %, 9 %, 12 %, and 15 % by weight using a laboratory-scale high-shear mixer to produce Bio-residue Modified Bitumen (BRMB). The resulting BRMB samples were evaluated through penetration and softening point tests, along with rheological characterization using the Superpave rutting parameter (G∗/sin δ) to assess the influence of treated CSR on fundamental binder properties. Both unaged and RTFO-aged samples were analyzed to capture the impact of short-term ageing on consistency and rutting resistance. Additionally, a cradle-to-gate assessment of embodied energy (EE) and embodied carbon (EC) revealed that replacing 10 % of bitumen with treated CSR significantly reduced the energy consumption and carbon emissions per kilogram of binder. The findings establish that treated CSR, particularly at a 9–10 % replacement level, offers a promising pathway for enhancing the sustainability of bituminous binders.</div></div>","PeriodicalId":22138,"journal":{"name":"Sustainable Chemistry and Pharmacy","volume":"47 ","pages":"Article 102135"},"PeriodicalIF":5.8000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminary evaluation of treated bio-residue as a modifier for bitumen\",\"authors\":\"R.G. Yatish, Kondeti Chiranjeevi, Doma Hemanth Kumar, H.M. Raviraj, A.U. Ravi Shankar\",\"doi\":\"10.1016/j.scp.2025.102135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the global shift toward sustainable construction practices, the reuse of organic industrial by-products in pavement applications is gaining momentum. Bio-residues, when appropriately treated, can serve as eco-friendly alternatives to conventional binders. This study presents a preliminary investigation into the use of thermally treated Caffeine Spent Residue (CSR) as a partial replacement for bitumen in binder formulations. The CSR, derived from organic industrial waste, underwent thermal pretreatment to improve compatibility with the bituminous phase. The treated CSR was then mixed with bitumen (VG-40) by replacing it at varying levels—0 %, 3 %, 6 %, 9 %, 12 %, and 15 % by weight using a laboratory-scale high-shear mixer to produce Bio-residue Modified Bitumen (BRMB). The resulting BRMB samples were evaluated through penetration and softening point tests, along with rheological characterization using the Superpave rutting parameter (G∗/sin δ) to assess the influence of treated CSR on fundamental binder properties. Both unaged and RTFO-aged samples were analyzed to capture the impact of short-term ageing on consistency and rutting resistance. Additionally, a cradle-to-gate assessment of embodied energy (EE) and embodied carbon (EC) revealed that replacing 10 % of bitumen with treated CSR significantly reduced the energy consumption and carbon emissions per kilogram of binder. The findings establish that treated CSR, particularly at a 9–10 % replacement level, offers a promising pathway for enhancing the sustainability of bituminous binders.</div></div>\",\"PeriodicalId\":22138,\"journal\":{\"name\":\"Sustainable Chemistry and Pharmacy\",\"volume\":\"47 \",\"pages\":\"Article 102135\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Chemistry and Pharmacy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352554125002335\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry and Pharmacy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352554125002335","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Preliminary evaluation of treated bio-residue as a modifier for bitumen
With the global shift toward sustainable construction practices, the reuse of organic industrial by-products in pavement applications is gaining momentum. Bio-residues, when appropriately treated, can serve as eco-friendly alternatives to conventional binders. This study presents a preliminary investigation into the use of thermally treated Caffeine Spent Residue (CSR) as a partial replacement for bitumen in binder formulations. The CSR, derived from organic industrial waste, underwent thermal pretreatment to improve compatibility with the bituminous phase. The treated CSR was then mixed with bitumen (VG-40) by replacing it at varying levels—0 %, 3 %, 6 %, 9 %, 12 %, and 15 % by weight using a laboratory-scale high-shear mixer to produce Bio-residue Modified Bitumen (BRMB). The resulting BRMB samples were evaluated through penetration and softening point tests, along with rheological characterization using the Superpave rutting parameter (G∗/sin δ) to assess the influence of treated CSR on fundamental binder properties. Both unaged and RTFO-aged samples were analyzed to capture the impact of short-term ageing on consistency and rutting resistance. Additionally, a cradle-to-gate assessment of embodied energy (EE) and embodied carbon (EC) revealed that replacing 10 % of bitumen with treated CSR significantly reduced the energy consumption and carbon emissions per kilogram of binder. The findings establish that treated CSR, particularly at a 9–10 % replacement level, offers a promising pathway for enhancing the sustainability of bituminous binders.
期刊介绍:
Sustainable Chemistry and Pharmacy publishes research that is related to chemistry, pharmacy and sustainability science in a forward oriented manner. It provides a unique forum for the publication of innovative research on the intersection and overlap of chemistry and pharmacy on the one hand and sustainability on the other hand. This includes contributions related to increasing sustainability of chemistry and pharmaceutical science and industries itself as well as their products in relation to the contribution of these to sustainability itself. As an interdisciplinary and transdisciplinary journal it addresses all sustainability related issues along the life cycle of chemical and pharmaceutical products form resource related topics until the end of life of products. This includes not only natural science based approaches and issues but also from humanities, social science and economics as far as they are dealing with sustainability related to chemistry and pharmacy. Sustainable Chemistry and Pharmacy aims at bridging between disciplines as well as developing and developed countries.