基于DDF2Pol的偏振sar图像分类双域特征融合网络

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mohammed Q. Alkhatib
{"title":"基于DDF2Pol的偏振sar图像分类双域特征融合网络","authors":"Mohammed Q. Alkhatib","doi":"10.1016/j.patrec.2025.07.015","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents DDF2Pol, a lightweight dual-domain convolutional neural network for PolSAR image classification. The proposed architecture integrates two parallel feature extraction streams — one real-valued and one complex-valued — designed to capture complementary spatial and polarimetric information from PolSAR data. To further refine the extracted features, a depth-wise convolution layer is employed for spatial enhancement, followed by a coordinate attention mechanism to focus on the most informative regions. Experimental evaluations conducted on two benchmark datasets, Flevoland and San Francisco, demonstrate that DDF2Pol achieves superior classification performance while maintaining low model complexity. Specifically, it attains an Overall Accuracy (OA) of 98.16% on the Flevoland dataset and 96.12% on the San Francisco dataset, outperforming several state-of-the-art real- and complex-valued models. With only 91,371 parameters, DDF2Pol offers a practical and efficient solution for accurate PolSAR image analysis, even when training data is limited. The source code is publicly available at <span><span>https://github.com/mqalkhatib/DDF2Pol</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"197 ","pages":"Pages 110-116"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DDF2Pol: A Dual-Domain Feature Fusion Network for PolSAR Image Classification\",\"authors\":\"Mohammed Q. Alkhatib\",\"doi\":\"10.1016/j.patrec.2025.07.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents DDF2Pol, a lightweight dual-domain convolutional neural network for PolSAR image classification. The proposed architecture integrates two parallel feature extraction streams — one real-valued and one complex-valued — designed to capture complementary spatial and polarimetric information from PolSAR data. To further refine the extracted features, a depth-wise convolution layer is employed for spatial enhancement, followed by a coordinate attention mechanism to focus on the most informative regions. Experimental evaluations conducted on two benchmark datasets, Flevoland and San Francisco, demonstrate that DDF2Pol achieves superior classification performance while maintaining low model complexity. Specifically, it attains an Overall Accuracy (OA) of 98.16% on the Flevoland dataset and 96.12% on the San Francisco dataset, outperforming several state-of-the-art real- and complex-valued models. With only 91,371 parameters, DDF2Pol offers a practical and efficient solution for accurate PolSAR image analysis, even when training data is limited. The source code is publicly available at <span><span>https://github.com/mqalkhatib/DDF2Pol</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"197 \",\"pages\":\"Pages 110-116\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865525002685\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525002685","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于偏振sar图像分类的轻量级双域卷积神经网络DDF2Pol。所提出的架构集成了两个并行特征提取流-一个实值和一个复值-旨在从PolSAR数据中捕获互补的空间和偏振信息。为了进一步细化提取的特征,采用深度卷积层进行空间增强,然后采用坐标关注机制集中在信息量最大的区域。在Flevoland和San Francisco两个基准数据集上进行的实验评估表明,DDF2Pol在保持较低模型复杂度的同时取得了较好的分类性能。具体来说,它在Flevoland数据集上的总体准确率(OA)为98.16%,在San Francisco数据集上为96.12%,优于几个最先进的实值和复值模型。DDF2Pol只有91,371个参数,即使在训练数据有限的情况下,也为精确的PolSAR图像分析提供了实用而高效的解决方案。源代码可在https://github.com/mqalkhatib/DDF2Pol上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DDF2Pol: A Dual-Domain Feature Fusion Network for PolSAR Image Classification

DDF2Pol: A Dual-Domain Feature Fusion Network for PolSAR Image Classification
This paper presents DDF2Pol, a lightweight dual-domain convolutional neural network for PolSAR image classification. The proposed architecture integrates two parallel feature extraction streams — one real-valued and one complex-valued — designed to capture complementary spatial and polarimetric information from PolSAR data. To further refine the extracted features, a depth-wise convolution layer is employed for spatial enhancement, followed by a coordinate attention mechanism to focus on the most informative regions. Experimental evaluations conducted on two benchmark datasets, Flevoland and San Francisco, demonstrate that DDF2Pol achieves superior classification performance while maintaining low model complexity. Specifically, it attains an Overall Accuracy (OA) of 98.16% on the Flevoland dataset and 96.12% on the San Francisco dataset, outperforming several state-of-the-art real- and complex-valued models. With only 91,371 parameters, DDF2Pol offers a practical and efficient solution for accurate PolSAR image analysis, even when training data is limited. The source code is publicly available at https://github.com/mqalkhatib/DDF2Pol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信