{"title":"极端天气下基于耦合神经网络和WAM的实时波模型误差校正","authors":"Aiyue Liu , Xiaofeng Li , Dongliang Shen","doi":"10.1016/j.ocemod.2025.102600","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate forecasts of wave parameters, especially significant wave height, are essential for maritime operations, yet predicting wave heights during extreme weather remains difficult due to rapid error growth in numerical models. This study presents a real-time error correction framework that couples a spatiotemporal attention-based neural network with the WAM wave model. The correction network is trained using CFOSAT satellite observations and dynamically coupled with WAM via a Fortran–Python interface. Applied to 114 typhoon events in the Northwest Pacific, the system reduces significant wave height (SWH) root mean square error (RMSE) by 24.6 % and increases the structural similarity index (SSIM) by 26.3 %, compared to WAM predictions made with default tuning parameters. Validation across 32 tropical cyclones with diverse intensities in the Gulf of Mexico shows strong generalization, achieving up to a 47 % reduction in RMSE and enhancing wave spectral accuracy by >30 %. These results highlight the robustness and scalability of this hybrid AI-physics framework, demonstrating its practical value for real-time wave forecasting during extreme weather events.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"198 ","pages":"Article 102600"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time wave model error correction via coupled neural networks and WAM under extreme weather\",\"authors\":\"Aiyue Liu , Xiaofeng Li , Dongliang Shen\",\"doi\":\"10.1016/j.ocemod.2025.102600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate forecasts of wave parameters, especially significant wave height, are essential for maritime operations, yet predicting wave heights during extreme weather remains difficult due to rapid error growth in numerical models. This study presents a real-time error correction framework that couples a spatiotemporal attention-based neural network with the WAM wave model. The correction network is trained using CFOSAT satellite observations and dynamically coupled with WAM via a Fortran–Python interface. Applied to 114 typhoon events in the Northwest Pacific, the system reduces significant wave height (SWH) root mean square error (RMSE) by 24.6 % and increases the structural similarity index (SSIM) by 26.3 %, compared to WAM predictions made with default tuning parameters. Validation across 32 tropical cyclones with diverse intensities in the Gulf of Mexico shows strong generalization, achieving up to a 47 % reduction in RMSE and enhancing wave spectral accuracy by >30 %. These results highlight the robustness and scalability of this hybrid AI-physics framework, demonstrating its practical value for real-time wave forecasting during extreme weather events.</div></div>\",\"PeriodicalId\":19457,\"journal\":{\"name\":\"Ocean Modelling\",\"volume\":\"198 \",\"pages\":\"Article 102600\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Modelling\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1463500325001039\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500325001039","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Real-time wave model error correction via coupled neural networks and WAM under extreme weather
Accurate forecasts of wave parameters, especially significant wave height, are essential for maritime operations, yet predicting wave heights during extreme weather remains difficult due to rapid error growth in numerical models. This study presents a real-time error correction framework that couples a spatiotemporal attention-based neural network with the WAM wave model. The correction network is trained using CFOSAT satellite observations and dynamically coupled with WAM via a Fortran–Python interface. Applied to 114 typhoon events in the Northwest Pacific, the system reduces significant wave height (SWH) root mean square error (RMSE) by 24.6 % and increases the structural similarity index (SSIM) by 26.3 %, compared to WAM predictions made with default tuning parameters. Validation across 32 tropical cyclones with diverse intensities in the Gulf of Mexico shows strong generalization, achieving up to a 47 % reduction in RMSE and enhancing wave spectral accuracy by >30 %. These results highlight the robustness and scalability of this hybrid AI-physics framework, demonstrating its practical value for real-time wave forecasting during extreme weather events.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.