基于barrier lyapunov的六自由度自主潜水器快速自适应鲁棒控制系统

IF 5.2 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Hossein Ahmadian , Mohammad Mehdi Arefi , Alireza Khayatian , Allahyar Montazeri
{"title":"基于barrier lyapunov的六自由度自主潜水器快速自适应鲁棒控制系统","authors":"Hossein Ahmadian ,&nbsp;Mohammad Mehdi Arefi ,&nbsp;Alireza Khayatian ,&nbsp;Allahyar Montazeri","doi":"10.1016/j.robot.2025.105115","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a novel fast adaptive back-stepping robust controller, based on the<em>barrier Lyapunov function</em> (<span><math><mi>BLF</mi></math></span>), to address the position and velocity constraints typically imposed in the design of <em>Euler–Lagrange systems</em>. The aim is to improve upon various aspects of conventional <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> adaptive control and Model Reference Adaptive Control (<span><math><mi>MRAC</mi></math></span>). The proposed controller reduces complexity by eliminating the low-pass filter from the design process in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> adaptive control, resulting in faster convergence and enhanced robustness against <em>nonlinear uncertainties, external disturbances, and actuator dynamics</em>, which are crucial in real-world applications. The performance of the proposed scheme is evaluated on two different Euler–Lagrange systems: a 6-degree-of-freedom (6-<span><math><mi>DOF</mi></math></span>) remotely operated vehicle (<span><math><mi>ROV</mi></math></span>) and a single-link robot manipulator. Key performance indicators such as settling time, overshoot percentage, control effort, and trajectory tracking error are used for assessment. The results confirm that the proposed controller outperforms both <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> adaptive control and <span><math><mi>MRAC</mi></math></span> in terms of tracking accuracy and state estimation errors for both position and velocity outputs. Additionally, the proposed method demonstrates superior performance in handling actuator dynamics, mitigating matched nonlinear time-varying disturbances, and achieving precise trajectory tracking, even in the presence of input gain uncertainties. These improvements establish the proposed controller as a more robust and efficient alternative to traditional adaptive control methods.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"194 ","pages":"Article 105115"},"PeriodicalIF":5.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A barrier Lyapunov-based fast adaptive robust control system for 6-DOF autonomous submersible vehicles\",\"authors\":\"Hossein Ahmadian ,&nbsp;Mohammad Mehdi Arefi ,&nbsp;Alireza Khayatian ,&nbsp;Allahyar Montazeri\",\"doi\":\"10.1016/j.robot.2025.105115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a novel fast adaptive back-stepping robust controller, based on the<em>barrier Lyapunov function</em> (<span><math><mi>BLF</mi></math></span>), to address the position and velocity constraints typically imposed in the design of <em>Euler–Lagrange systems</em>. The aim is to improve upon various aspects of conventional <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> adaptive control and Model Reference Adaptive Control (<span><math><mi>MRAC</mi></math></span>). The proposed controller reduces complexity by eliminating the low-pass filter from the design process in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> adaptive control, resulting in faster convergence and enhanced robustness against <em>nonlinear uncertainties, external disturbances, and actuator dynamics</em>, which are crucial in real-world applications. The performance of the proposed scheme is evaluated on two different Euler–Lagrange systems: a 6-degree-of-freedom (6-<span><math><mi>DOF</mi></math></span>) remotely operated vehicle (<span><math><mi>ROV</mi></math></span>) and a single-link robot manipulator. Key performance indicators such as settling time, overshoot percentage, control effort, and trajectory tracking error are used for assessment. The results confirm that the proposed controller outperforms both <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> adaptive control and <span><math><mi>MRAC</mi></math></span> in terms of tracking accuracy and state estimation errors for both position and velocity outputs. Additionally, the proposed method demonstrates superior performance in handling actuator dynamics, mitigating matched nonlinear time-varying disturbances, and achieving precise trajectory tracking, even in the presence of input gain uncertainties. These improvements establish the proposed controller as a more robust and efficient alternative to traditional adaptive control methods.</div></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":\"194 \",\"pages\":\"Article 105115\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092188902500212X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092188902500212X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于障碍李雅普诺夫函数(BLF)的新型快速自适应反演鲁棒控制器,以解决欧拉-拉格朗日系统设计中通常施加的位置和速度约束。目的是改进传统L1自适应控制和模型参考自适应控制(MRAC)的各个方面。该控制器通过消除L1自适应控制设计过程中的低通滤波器来降低复杂性,从而更快地收敛并增强对非线性不确定性、外部干扰和执行器动态的鲁棒性,这在实际应用中至关重要。在两种不同的欧拉-拉格朗日系统:六自由度(6-DOF)遥控车辆(ROV)和单连杆机器人操纵臂上对该方案的性能进行了评估。关键的性能指标,如稳定时间、超调百分比、控制努力和轨迹跟踪误差都用于评估。结果证实,该控制器在位置和速度输出的跟踪精度和状态估计误差方面优于L1自适应控制和MRAC。此外,即使在存在输入增益不确定性的情况下,该方法在处理执行器动力学,减轻匹配的非线性时变干扰以及实现精确的轨迹跟踪方面也表现出优异的性能。这些改进使所提出的控制器比传统的自适应控制方法更具鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A barrier Lyapunov-based fast adaptive robust control system for 6-DOF autonomous submersible vehicles
This paper proposes a novel fast adaptive back-stepping robust controller, based on thebarrier Lyapunov function (BLF), to address the position and velocity constraints typically imposed in the design of Euler–Lagrange systems. The aim is to improve upon various aspects of conventional L1 adaptive control and Model Reference Adaptive Control (MRAC). The proposed controller reduces complexity by eliminating the low-pass filter from the design process in L1 adaptive control, resulting in faster convergence and enhanced robustness against nonlinear uncertainties, external disturbances, and actuator dynamics, which are crucial in real-world applications. The performance of the proposed scheme is evaluated on two different Euler–Lagrange systems: a 6-degree-of-freedom (6-DOF) remotely operated vehicle (ROV) and a single-link robot manipulator. Key performance indicators such as settling time, overshoot percentage, control effort, and trajectory tracking error are used for assessment. The results confirm that the proposed controller outperforms both L1 adaptive control and MRAC in terms of tracking accuracy and state estimation errors for both position and velocity outputs. Additionally, the proposed method demonstrates superior performance in handling actuator dynamics, mitigating matched nonlinear time-varying disturbances, and achieving precise trajectory tracking, even in the presence of input gain uncertainties. These improvements establish the proposed controller as a more robust and efficient alternative to traditional adaptive control methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信