Jad F. Assaf MD , Abhimanyu S. Ahuja MD , Vishnu Kannan , Hady Yazbeck MD , Jenna Krivit MD , Travis K. Redd MD, MPH
{"title":"计算机视觉在感染性角膜炎中的应用综述","authors":"Jad F. Assaf MD , Abhimanyu S. Ahuja MD , Vishnu Kannan , Hady Yazbeck MD , Jenna Krivit MD , Travis K. Redd MD, MPH","doi":"10.1016/j.xops.2025.100861","DOIUrl":null,"url":null,"abstract":"<div><h3>Clinical Relevance</h3><div>Corneal ulcers cause preventable blindness in >2 million individuals annually, primarily affecting low- and middle-income countries. Prompt and accurate pathogen identification is essential for targeted antimicrobial treatment, yet current diagnostic methods are costly and slow and require specialized expertise, limiting accessibility.</div></div><div><h3>Methods</h3><div>We systematically reviewed literature published from 2017 to 2024, identifying 37 studies that developed or validated artificial intelligence (AI) models for pathogen detection and related classification tasks in infectious keratitis. The studies were analyzed for model types, input modalities, datasets, ground truth determination methods, and validation practices.</div></div><div><h3>Results</h3><div>Artificial intelligence models demonstrated promising accuracy in pathogen detection using image interpretation techniques. Common limitations included limited generalizability, lack of diverse datasets, absence of multilabeled classification methods, and variability in ground truth standards. Most studies relied on single-center retrospective datasets, limiting applicability in routine clinical practice.</div></div><div><h3>Conclusions</h3><div>Artificial intelligence shows significant potential to improve pathogen detection in infectious keratitis, enhancing both diagnostic accuracy and accessibility globally. Future research should address identified limitations by increasing dataset diversity, adopting multilabel classification, implementing prospective and multicenter validations, and standardizing ground truth definitions.</div></div><div><h3>Financial Disclosure(s)</h3><div>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</div></div>","PeriodicalId":74363,"journal":{"name":"Ophthalmology science","volume":"5 6","pages":"Article 100861"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of Computer Vision for Infectious Keratitis: A Systematic Review\",\"authors\":\"Jad F. Assaf MD , Abhimanyu S. Ahuja MD , Vishnu Kannan , Hady Yazbeck MD , Jenna Krivit MD , Travis K. Redd MD, MPH\",\"doi\":\"10.1016/j.xops.2025.100861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Clinical Relevance</h3><div>Corneal ulcers cause preventable blindness in >2 million individuals annually, primarily affecting low- and middle-income countries. Prompt and accurate pathogen identification is essential for targeted antimicrobial treatment, yet current diagnostic methods are costly and slow and require specialized expertise, limiting accessibility.</div></div><div><h3>Methods</h3><div>We systematically reviewed literature published from 2017 to 2024, identifying 37 studies that developed or validated artificial intelligence (AI) models for pathogen detection and related classification tasks in infectious keratitis. The studies were analyzed for model types, input modalities, datasets, ground truth determination methods, and validation practices.</div></div><div><h3>Results</h3><div>Artificial intelligence models demonstrated promising accuracy in pathogen detection using image interpretation techniques. Common limitations included limited generalizability, lack of diverse datasets, absence of multilabeled classification methods, and variability in ground truth standards. Most studies relied on single-center retrospective datasets, limiting applicability in routine clinical practice.</div></div><div><h3>Conclusions</h3><div>Artificial intelligence shows significant potential to improve pathogen detection in infectious keratitis, enhancing both diagnostic accuracy and accessibility globally. Future research should address identified limitations by increasing dataset diversity, adopting multilabel classification, implementing prospective and multicenter validations, and standardizing ground truth definitions.</div></div><div><h3>Financial Disclosure(s)</h3><div>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</div></div>\",\"PeriodicalId\":74363,\"journal\":{\"name\":\"Ophthalmology science\",\"volume\":\"5 6\",\"pages\":\"Article 100861\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ophthalmology science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666914525001599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmology science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666914525001599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Applications of Computer Vision for Infectious Keratitis: A Systematic Review
Clinical Relevance
Corneal ulcers cause preventable blindness in >2 million individuals annually, primarily affecting low- and middle-income countries. Prompt and accurate pathogen identification is essential for targeted antimicrobial treatment, yet current diagnostic methods are costly and slow and require specialized expertise, limiting accessibility.
Methods
We systematically reviewed literature published from 2017 to 2024, identifying 37 studies that developed or validated artificial intelligence (AI) models for pathogen detection and related classification tasks in infectious keratitis. The studies were analyzed for model types, input modalities, datasets, ground truth determination methods, and validation practices.
Results
Artificial intelligence models demonstrated promising accuracy in pathogen detection using image interpretation techniques. Common limitations included limited generalizability, lack of diverse datasets, absence of multilabeled classification methods, and variability in ground truth standards. Most studies relied on single-center retrospective datasets, limiting applicability in routine clinical practice.
Conclusions
Artificial intelligence shows significant potential to improve pathogen detection in infectious keratitis, enhancing both diagnostic accuracy and accessibility globally. Future research should address identified limitations by increasing dataset diversity, adopting multilabel classification, implementing prospective and multicenter validations, and standardizing ground truth definitions.
Financial Disclosure(s)
Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.