计算机视觉在感染性角膜炎中的应用综述

IF 4.6 Q1 OPHTHALMOLOGY
Jad F. Assaf MD , Abhimanyu S. Ahuja MD , Vishnu Kannan , Hady Yazbeck MD , Jenna Krivit MD , Travis K. Redd MD, MPH
{"title":"计算机视觉在感染性角膜炎中的应用综述","authors":"Jad F. Assaf MD ,&nbsp;Abhimanyu S. Ahuja MD ,&nbsp;Vishnu Kannan ,&nbsp;Hady Yazbeck MD ,&nbsp;Jenna Krivit MD ,&nbsp;Travis K. Redd MD, MPH","doi":"10.1016/j.xops.2025.100861","DOIUrl":null,"url":null,"abstract":"<div><h3>Clinical Relevance</h3><div>Corneal ulcers cause preventable blindness in &gt;2 million individuals annually, primarily affecting low- and middle-income countries. Prompt and accurate pathogen identification is essential for targeted antimicrobial treatment, yet current diagnostic methods are costly and slow and require specialized expertise, limiting accessibility.</div></div><div><h3>Methods</h3><div>We systematically reviewed literature published from 2017 to 2024, identifying 37 studies that developed or validated artificial intelligence (AI) models for pathogen detection and related classification tasks in infectious keratitis. The studies were analyzed for model types, input modalities, datasets, ground truth determination methods, and validation practices.</div></div><div><h3>Results</h3><div>Artificial intelligence models demonstrated promising accuracy in pathogen detection using image interpretation techniques. Common limitations included limited generalizability, lack of diverse datasets, absence of multilabeled classification methods, and variability in ground truth standards. Most studies relied on single-center retrospective datasets, limiting applicability in routine clinical practice.</div></div><div><h3>Conclusions</h3><div>Artificial intelligence shows significant potential to improve pathogen detection in infectious keratitis, enhancing both diagnostic accuracy and accessibility globally. Future research should address identified limitations by increasing dataset diversity, adopting multilabel classification, implementing prospective and multicenter validations, and standardizing ground truth definitions.</div></div><div><h3>Financial Disclosure(s)</h3><div>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</div></div>","PeriodicalId":74363,"journal":{"name":"Ophthalmology science","volume":"5 6","pages":"Article 100861"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of Computer Vision for Infectious Keratitis: A Systematic Review\",\"authors\":\"Jad F. Assaf MD ,&nbsp;Abhimanyu S. Ahuja MD ,&nbsp;Vishnu Kannan ,&nbsp;Hady Yazbeck MD ,&nbsp;Jenna Krivit MD ,&nbsp;Travis K. Redd MD, MPH\",\"doi\":\"10.1016/j.xops.2025.100861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Clinical Relevance</h3><div>Corneal ulcers cause preventable blindness in &gt;2 million individuals annually, primarily affecting low- and middle-income countries. Prompt and accurate pathogen identification is essential for targeted antimicrobial treatment, yet current diagnostic methods are costly and slow and require specialized expertise, limiting accessibility.</div></div><div><h3>Methods</h3><div>We systematically reviewed literature published from 2017 to 2024, identifying 37 studies that developed or validated artificial intelligence (AI) models for pathogen detection and related classification tasks in infectious keratitis. The studies were analyzed for model types, input modalities, datasets, ground truth determination methods, and validation practices.</div></div><div><h3>Results</h3><div>Artificial intelligence models demonstrated promising accuracy in pathogen detection using image interpretation techniques. Common limitations included limited generalizability, lack of diverse datasets, absence of multilabeled classification methods, and variability in ground truth standards. Most studies relied on single-center retrospective datasets, limiting applicability in routine clinical practice.</div></div><div><h3>Conclusions</h3><div>Artificial intelligence shows significant potential to improve pathogen detection in infectious keratitis, enhancing both diagnostic accuracy and accessibility globally. Future research should address identified limitations by increasing dataset diversity, adopting multilabel classification, implementing prospective and multicenter validations, and standardizing ground truth definitions.</div></div><div><h3>Financial Disclosure(s)</h3><div>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</div></div>\",\"PeriodicalId\":74363,\"journal\":{\"name\":\"Ophthalmology science\",\"volume\":\"5 6\",\"pages\":\"Article 100861\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ophthalmology science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666914525001599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmology science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666914525001599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

临床相关性角膜溃疡每年导致200万人可预防失明,主要影响低收入和中等收入国家。及时和准确的病原体鉴定对于靶向抗微生物治疗至关重要,但目前的诊断方法昂贵且缓慢,需要专门知识,限制了可及性。方法系统回顾2017 - 2024年发表的文献,筛选出37项开发或验证人工智能(AI)模型用于感染性角膜炎病原体检测及相关分类任务的研究。研究分析了模型类型、输入方式、数据集、地面真值确定方法和验证实践。结果人工智能模型在利用图像解释技术检测病原体方面显示出良好的准确性。常见的限制包括有限的通用性,缺乏多样化的数据集,缺乏多标签分类方法,以及基础真值标准的可变性。大多数研究依赖于单中心回顾性数据集,限制了在常规临床实践中的适用性。结论人工智能在提高感染性角膜炎病原体检测方面具有显著潜力,可提高诊断的准确性和可及性。未来的研究应通过增加数据集多样性、采用多标签分类、实施前瞻性和多中心验证以及标准化基础真值定义来解决已识别的局限性。财务披露专有或商业披露可在本文末尾的脚注和披露中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of Computer Vision for Infectious Keratitis: A Systematic Review

Clinical Relevance

Corneal ulcers cause preventable blindness in >2 million individuals annually, primarily affecting low- and middle-income countries. Prompt and accurate pathogen identification is essential for targeted antimicrobial treatment, yet current diagnostic methods are costly and slow and require specialized expertise, limiting accessibility.

Methods

We systematically reviewed literature published from 2017 to 2024, identifying 37 studies that developed or validated artificial intelligence (AI) models for pathogen detection and related classification tasks in infectious keratitis. The studies were analyzed for model types, input modalities, datasets, ground truth determination methods, and validation practices.

Results

Artificial intelligence models demonstrated promising accuracy in pathogen detection using image interpretation techniques. Common limitations included limited generalizability, lack of diverse datasets, absence of multilabeled classification methods, and variability in ground truth standards. Most studies relied on single-center retrospective datasets, limiting applicability in routine clinical practice.

Conclusions

Artificial intelligence shows significant potential to improve pathogen detection in infectious keratitis, enhancing both diagnostic accuracy and accessibility globally. Future research should address identified limitations by increasing dataset diversity, adopting multilabel classification, implementing prospective and multicenter validations, and standardizing ground truth definitions.

Financial Disclosure(s)

Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ophthalmology science
Ophthalmology science Ophthalmology
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
89 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信