Moulay Barkatou , Mark van Hoeij , Johannes Middeke , Yi Zhou
{"title":"线性差分系统的超几何解","authors":"Moulay Barkatou , Mark van Hoeij , Johannes Middeke , Yi Zhou","doi":"10.1016/j.jsc.2025.102475","DOIUrl":null,"url":null,"abstract":"<div><div>We extend Petkovšek's algorithm for computing hypergeometric solutions of scalar difference equations to the case of difference systems <span><math><mi>τ</mi><mo>(</mo><mi>Y</mi><mo>)</mo><mo>=</mo><mi>M</mi><mi>Y</mi></math></span>, with <span><math><mi>M</mi><mo>∈</mo><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span>, where <em>τ</em> is the shift operator. Hypergeometric solutions are solutions of the form <em>γP</em> where <span><math><mi>P</mi><mo>∈</mo><mi>C</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <em>γ</em> is a hypergeometric term over <span><math><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, i.e. <span><math><mi>τ</mi><mo>(</mo><mi>γ</mi><mo>)</mo><mo>/</mo><mi>γ</mi><mo>∈</mo><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. Our contributions concern efficient computation of a set of candidates for <span><math><mi>τ</mi><mo>(</mo><mi>γ</mi><mo>)</mo><mo>/</mo><mi>γ</mi></math></span> which we write as <span><math><mi>λ</mi><mo>=</mo><mi>c</mi><mfrac><mrow><mi>A</mi></mrow><mrow><mi>B</mi></mrow></mfrac></math></span> with monic <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><mi>C</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, <span><math><mi>c</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Factors of the denominators of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> and <em>M</em> give candidates for <em>A</em> and <em>B</em>, while another algorithm is needed for <em>c</em>. We use super-reduction algorithm to compute candidates for <em>c</em>, as well as other ingredients to reduce the list of candidates for <span><math><mi>A</mi><mo>/</mo><mi>B</mi></math></span>. To further reduce the number of candidates <span><math><mi>A</mi><mo>/</mo><mi>B</mi></math></span>, we bound the <em>type</em> of <span><math><mi>A</mi><mo>/</mo><mi>B</mi></math></span> by bounding <em>local types</em>. Our algorithm has been implemented in Maple and experiments show that our implementation can handle systems of high dimension, which is useful for factoring operators.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"132 ","pages":"Article 102475"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypergeometric solutions of linear difference systems\",\"authors\":\"Moulay Barkatou , Mark van Hoeij , Johannes Middeke , Yi Zhou\",\"doi\":\"10.1016/j.jsc.2025.102475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We extend Petkovšek's algorithm for computing hypergeometric solutions of scalar difference equations to the case of difference systems <span><math><mi>τ</mi><mo>(</mo><mi>Y</mi><mo>)</mo><mo>=</mo><mi>M</mi><mi>Y</mi></math></span>, with <span><math><mi>M</mi><mo>∈</mo><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span>, where <em>τ</em> is the shift operator. Hypergeometric solutions are solutions of the form <em>γP</em> where <span><math><mi>P</mi><mo>∈</mo><mi>C</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <em>γ</em> is a hypergeometric term over <span><math><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, i.e. <span><math><mi>τ</mi><mo>(</mo><mi>γ</mi><mo>)</mo><mo>/</mo><mi>γ</mi><mo>∈</mo><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. Our contributions concern efficient computation of a set of candidates for <span><math><mi>τ</mi><mo>(</mo><mi>γ</mi><mo>)</mo><mo>/</mo><mi>γ</mi></math></span> which we write as <span><math><mi>λ</mi><mo>=</mo><mi>c</mi><mfrac><mrow><mi>A</mi></mrow><mrow><mi>B</mi></mrow></mfrac></math></span> with monic <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><mi>C</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, <span><math><mi>c</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Factors of the denominators of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> and <em>M</em> give candidates for <em>A</em> and <em>B</em>, while another algorithm is needed for <em>c</em>. We use super-reduction algorithm to compute candidates for <em>c</em>, as well as other ingredients to reduce the list of candidates for <span><math><mi>A</mi><mo>/</mo><mi>B</mi></math></span>. To further reduce the number of candidates <span><math><mi>A</mi><mo>/</mo><mi>B</mi></math></span>, we bound the <em>type</em> of <span><math><mi>A</mi><mo>/</mo><mi>B</mi></math></span> by bounding <em>local types</em>. Our algorithm has been implemented in Maple and experiments show that our implementation can handle systems of high dimension, which is useful for factoring operators.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"132 \",\"pages\":\"Article 102475\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000574\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000574","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Hypergeometric solutions of linear difference systems
We extend Petkovšek's algorithm for computing hypergeometric solutions of scalar difference equations to the case of difference systems , with , where τ is the shift operator. Hypergeometric solutions are solutions of the form γP where and γ is a hypergeometric term over , i.e. . Our contributions concern efficient computation of a set of candidates for which we write as with monic , . Factors of the denominators of and M give candidates for A and B, while another algorithm is needed for c. We use super-reduction algorithm to compute candidates for c, as well as other ingredients to reduce the list of candidates for . To further reduce the number of candidates , we bound the type of by bounding local types. Our algorithm has been implemented in Maple and experiments show that our implementation can handle systems of high dimension, which is useful for factoring operators.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.