外延生长理论中一类四阶椭圆型偏微分方程径向解的存在性与不存在性

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Biswajit Pandit , Pratikshya Mainini , Amit K. Verma , Ravi P. Agarwal
{"title":"外延生长理论中一类四阶椭圆型偏微分方程径向解的存在性与不存在性","authors":"Biswajit Pandit ,&nbsp;Pratikshya Mainini ,&nbsp;Amit K. Verma ,&nbsp;Ravi P. Agarwal","doi":"10.1016/j.amc.2025.129642","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we focus on a class of fourth order elliptic partial differential equation arising in epitaxial growth theory as follows<span><span><span><math><mrow><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>f</mi><mo>=</mo><mi>det</mi><mo>⁡</mo><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>f</mi><mo>)</mo><mo>+</mo><mi>λ</mi><mi>G</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mrow></math></span></span></span> where <span><math><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>f</mi><mo>)</mo></math></span> is the Hessian matrix, <span><math><mi>λ</mi><mo>∈</mo><mi>R</mi></math></span> is the parameter which measures the speed of the particle and <span><math><mi>G</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is the deposition rate. We fix the problem on the disk with radius <em>T</em> and it is defined by <span><math><mi>Ω</mi><mo>=</mo><mo>{</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>:</mo><msup><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></msup><mo>≤</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>}</mo><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We investigate the radial solutions subject to different types of boundary condition. Since the radial problems are nonlinear, non-self-adjoint, fourth order and a parameter <em>λ</em> is present, therefore it is not easy to analyze the radial solution. Here, we apply monotone iterative technique to show the existence of at least one solution in continuous space. We manifest some properties of the solutions and provide bounds for the values of the parameter <em>λ</em> to separate the existence from non-existence of the radial solution. Exact solution of this problem is not known. To find the approximate solutions, we develop an iterative technique based on Adomian polynomial and Green's function. We place some numerical data that will verify the theoretical results.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"509 ","pages":"Article 129642"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and non-existence of radial solutions for a class of fourth order elliptic PDE arising in epitaxial growth theory\",\"authors\":\"Biswajit Pandit ,&nbsp;Pratikshya Mainini ,&nbsp;Amit K. Verma ,&nbsp;Ravi P. Agarwal\",\"doi\":\"10.1016/j.amc.2025.129642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we focus on a class of fourth order elliptic partial differential equation arising in epitaxial growth theory as follows<span><span><span><math><mrow><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>f</mi><mo>=</mo><mi>det</mi><mo>⁡</mo><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>f</mi><mo>)</mo><mo>+</mo><mi>λ</mi><mi>G</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mrow></math></span></span></span> where <span><math><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>f</mi><mo>)</mo></math></span> is the Hessian matrix, <span><math><mi>λ</mi><mo>∈</mo><mi>R</mi></math></span> is the parameter which measures the speed of the particle and <span><math><mi>G</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is the deposition rate. We fix the problem on the disk with radius <em>T</em> and it is defined by <span><math><mi>Ω</mi><mo>=</mo><mo>{</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>:</mo><msup><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mn>2</mn></mrow></msup><mo>≤</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>}</mo><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We investigate the radial solutions subject to different types of boundary condition. Since the radial problems are nonlinear, non-self-adjoint, fourth order and a parameter <em>λ</em> is present, therefore it is not easy to analyze the radial solution. Here, we apply monotone iterative technique to show the existence of at least one solution in continuous space. We manifest some properties of the solutions and provide bounds for the values of the parameter <em>λ</em> to separate the existence from non-existence of the radial solution. Exact solution of this problem is not known. To find the approximate solutions, we develop an iterative technique based on Adomian polynomial and Green's function. We place some numerical data that will verify the theoretical results.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"509 \",\"pages\":\"Article 129642\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325003686\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325003686","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文主要讨论外延生长理论中出现的一类四阶椭圆型偏微分方程followsΔ2f=det (D2f)+λG(x),x∈Ω∧R2,其中(D2f)是Hessian矩阵,λ∈R是测量粒子速度的参数,G(x)是沉积速率。我们在半径为T的磁盘上解决这个问题,它的定义为Ω={(x1,x2):x12+x22≤T2}∧R2。研究了不同边界条件下的径向解。由于径向问题是非线性的、非自伴随的、四阶的,并且存在一个参数λ,因此不容易分析径向解。本文利用单调迭代技术证明了连续空间中至少有一个解的存在性。我们证明了解的一些性质,并给出了参数λ值的界,以区分径向解的存在性和不存在性。这个问题的确切解还不知道。为了求出近似解,我们提出了一种基于Adomian多项式和Green函数的迭代方法。我们放置了一些数值数据来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and non-existence of radial solutions for a class of fourth order elliptic PDE arising in epitaxial growth theory
In this paper, we focus on a class of fourth order elliptic partial differential equation arising in epitaxial growth theory as followsΔ2f=det(D2f)+λG(x),xΩR2, where (D2f) is the Hessian matrix, λR is the parameter which measures the speed of the particle and G(x) is the deposition rate. We fix the problem on the disk with radius T and it is defined by Ω={(x1,x2):x12+x22T2}R2. We investigate the radial solutions subject to different types of boundary condition. Since the radial problems are nonlinear, non-self-adjoint, fourth order and a parameter λ is present, therefore it is not easy to analyze the radial solution. Here, we apply monotone iterative technique to show the existence of at least one solution in continuous space. We manifest some properties of the solutions and provide bounds for the values of the parameter λ to separate the existence from non-existence of the radial solution. Exact solution of this problem is not known. To find the approximate solutions, we develop an iterative technique based on Adomian polynomial and Green's function. We place some numerical data that will verify the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信