{"title":"生物刺激剂促进番茄生长和抗逆性:海藻酸盐、壳聚糖和水杨酸的联合作用","authors":"Fatima El Amerany , Meriem Naimi , Mohammed Rhazi","doi":"10.1016/j.jbiotec.2025.07.022","DOIUrl":null,"url":null,"abstract":"<div><div>Mechanical wounding, a significant cause of yield loss in agricultural crops, has prompted recent efforts to identify effective solutions, such as applying biostimulants that not only improve plant growth but also enhance resistance to mechanical damage. This study evaluates the combined effects of alginate (Al-1, 0.75 mg mL−1), salicylic acid (SA, 100 µM), and chitosan (Ch, 0.75 mg mL−1) on tomato plant growth, biochemical responses, and recovery from mechanical wounding. The results indicate that Al-1 accumulates at the plant cell wall, transitioning from a liquid to a film-like state. During this process, Al-1 also loses over 50 % of its sodium ions and fails to acquire nitrogen ions from Ch. However, the combined application of Al-1, SA, and Ch significantly promotes plant growth and enhances mechanical stress resistance by increasing chlorophyll, sugar, protein, and carotenoid levels, as well as improving xylem development compared to other treatments. Furthermore, the Al-1 +Ch+SA combination elevates H<sub>2</sub>O<sub>2</sub> levels and APX activity in adjacent leaves 60 min after wounding; although this response is delayed compared to a individual treatments. These findings suggest that this combination of biostimulants enhances plant resilience to mechanical injury, offering potential for improving crop yield and quality in stress-prone agricultural systems</div></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"406 ","pages":"Pages 244-254"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biostimulant-driven growth enhancement and stress resistance in tomato: The combined impact of alginate, chitosan, and salicylic acid\",\"authors\":\"Fatima El Amerany , Meriem Naimi , Mohammed Rhazi\",\"doi\":\"10.1016/j.jbiotec.2025.07.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mechanical wounding, a significant cause of yield loss in agricultural crops, has prompted recent efforts to identify effective solutions, such as applying biostimulants that not only improve plant growth but also enhance resistance to mechanical damage. This study evaluates the combined effects of alginate (Al-1, 0.75 mg mL−1), salicylic acid (SA, 100 µM), and chitosan (Ch, 0.75 mg mL−1) on tomato plant growth, biochemical responses, and recovery from mechanical wounding. The results indicate that Al-1 accumulates at the plant cell wall, transitioning from a liquid to a film-like state. During this process, Al-1 also loses over 50 % of its sodium ions and fails to acquire nitrogen ions from Ch. However, the combined application of Al-1, SA, and Ch significantly promotes plant growth and enhances mechanical stress resistance by increasing chlorophyll, sugar, protein, and carotenoid levels, as well as improving xylem development compared to other treatments. Furthermore, the Al-1 +Ch+SA combination elevates H<sub>2</sub>O<sub>2</sub> levels and APX activity in adjacent leaves 60 min after wounding; although this response is delayed compared to a individual treatments. These findings suggest that this combination of biostimulants enhances plant resilience to mechanical injury, offering potential for improving crop yield and quality in stress-prone agricultural systems</div></div>\",\"PeriodicalId\":15153,\"journal\":{\"name\":\"Journal of biotechnology\",\"volume\":\"406 \",\"pages\":\"Pages 244-254\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168165625001932\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165625001932","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Biostimulant-driven growth enhancement and stress resistance in tomato: The combined impact of alginate, chitosan, and salicylic acid
Mechanical wounding, a significant cause of yield loss in agricultural crops, has prompted recent efforts to identify effective solutions, such as applying biostimulants that not only improve plant growth but also enhance resistance to mechanical damage. This study evaluates the combined effects of alginate (Al-1, 0.75 mg mL−1), salicylic acid (SA, 100 µM), and chitosan (Ch, 0.75 mg mL−1) on tomato plant growth, biochemical responses, and recovery from mechanical wounding. The results indicate that Al-1 accumulates at the plant cell wall, transitioning from a liquid to a film-like state. During this process, Al-1 also loses over 50 % of its sodium ions and fails to acquire nitrogen ions from Ch. However, the combined application of Al-1, SA, and Ch significantly promotes plant growth and enhances mechanical stress resistance by increasing chlorophyll, sugar, protein, and carotenoid levels, as well as improving xylem development compared to other treatments. Furthermore, the Al-1 +Ch+SA combination elevates H2O2 levels and APX activity in adjacent leaves 60 min after wounding; although this response is delayed compared to a individual treatments. These findings suggest that this combination of biostimulants enhances plant resilience to mechanical injury, offering potential for improving crop yield and quality in stress-prone agricultural systems
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.