{"title":"弯曲时空中引力能量密度的逆哈密顿重构","authors":"Davood Momeni","doi":"10.1016/j.nuclphysb.2025.117043","DOIUrl":null,"url":null,"abstract":"<div><div>We present a general framework for reconstructing effective Hamiltonians from known gravitational energy density profiles in curved spacetime. Starting from local thermal equilibrium and Liouville dynamics, we establish an inverse procedure that relates the macroscopic energy density <span><math><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> to a distribution function <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>)</mo><mo>∼</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>β</mi><mi>H</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></msup></math></span>, and recovers the underlying Hamiltonian <span><math><mi>H</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> via functional inversion. This approach synthesizes tools from relativistic kinetic theory, statistical mechanics, and covariant gravitational thermodynamics, offering a systematic way to extract microscopic dynamics from coarse-grained energy observables. Applications include FLRW cosmology, Loop Quantum Gravity corrections, AdS/CFT holography, and the SYK model. Our results provide a novel route for probing emergent spacetime dynamics through observable densities, bridging geometry, entropy, and Hamiltonian flow in curved backgrounds.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1018 ","pages":"Article 117043"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Hamiltonian reconstruction from gravitational energy density in curved spacetime\",\"authors\":\"Davood Momeni\",\"doi\":\"10.1016/j.nuclphysb.2025.117043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a general framework for reconstructing effective Hamiltonians from known gravitational energy density profiles in curved spacetime. Starting from local thermal equilibrium and Liouville dynamics, we establish an inverse procedure that relates the macroscopic energy density <span><math><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> to a distribution function <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>)</mo><mo>∼</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>β</mi><mi>H</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></msup></math></span>, and recovers the underlying Hamiltonian <span><math><mi>H</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> via functional inversion. This approach synthesizes tools from relativistic kinetic theory, statistical mechanics, and covariant gravitational thermodynamics, offering a systematic way to extract microscopic dynamics from coarse-grained energy observables. Applications include FLRW cosmology, Loop Quantum Gravity corrections, AdS/CFT holography, and the SYK model. Our results provide a novel route for probing emergent spacetime dynamics through observable densities, bridging geometry, entropy, and Hamiltonian flow in curved backgrounds.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1018 \",\"pages\":\"Article 117043\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321325002524\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325002524","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Inverse Hamiltonian reconstruction from gravitational energy density in curved spacetime
We present a general framework for reconstructing effective Hamiltonians from known gravitational energy density profiles in curved spacetime. Starting from local thermal equilibrium and Liouville dynamics, we establish an inverse procedure that relates the macroscopic energy density to a distribution function , and recovers the underlying Hamiltonian via functional inversion. This approach synthesizes tools from relativistic kinetic theory, statistical mechanics, and covariant gravitational thermodynamics, offering a systematic way to extract microscopic dynamics from coarse-grained energy observables. Applications include FLRW cosmology, Loop Quantum Gravity corrections, AdS/CFT holography, and the SYK model. Our results provide a novel route for probing emergent spacetime dynamics through observable densities, bridging geometry, entropy, and Hamiltonian flow in curved backgrounds.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.