Xusheng Wang , Mingchen Gao , Alexander R.P. Harrison , Muhammad Irfan , Xi Lin , Boyang Mao , Binjian Nie , Zhigang Hu , Jianxin Zou
{"title":"绿色氨利用途径:用于高效发电的集成氨固体氧化物燃料电池系统","authors":"Xusheng Wang , Mingchen Gao , Alexander R.P. Harrison , Muhammad Irfan , Xi Lin , Boyang Mao , Binjian Nie , Zhigang Hu , Jianxin Zou","doi":"10.1016/j.enchem.2025.100167","DOIUrl":null,"url":null,"abstract":"<div><div>Ammonia (NH<sub>3</sub>) is a promising energy carrier to store and transport renewable energy due to its high energy density (18.6 MJ kg<sup>-1</sup>, containing 17.6 wt% H<sub>2</sub>) and mature storage and transportation. Ammonia-fuelled solid oxide fuel cells (NH<sub>3</sub>-SOFC) show multiple clean energy applications due to their high efficiency, near-zero CO<sub>2</sub> emissions, and flexible integration. This work delineates the current status and prospects of integrated NH<sub>3</sub>-SOFC technology towards a green ammonia economy by investigating its operating principle, system integration, and cost-competitiveness. Technoeconomic analysis results suggest that the levelized cost of electricity (LCOE) for NH<sub>3</sub>-SOFC is approximately 0.24 $ kWh<sup>-1</sup>. In addition, ammonia has demonstrated a high potential as a green shipping fuel because of its carbon-free and low flammability characteristics, while necessitating industry standards and large-scale application scenarios. It has also been indentified that the large-scale application of NH<sub>3</sub>-SOFC largely depends on the reduction in capital cost, electrode materials improvement and volumetric power density increase.</div></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"7 5","pages":"Article 100167"},"PeriodicalIF":23.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A green ammonia utilization pathway: Integrated ammonia-solid oxide fuel cell systems for efficient power generation\",\"authors\":\"Xusheng Wang , Mingchen Gao , Alexander R.P. Harrison , Muhammad Irfan , Xi Lin , Boyang Mao , Binjian Nie , Zhigang Hu , Jianxin Zou\",\"doi\":\"10.1016/j.enchem.2025.100167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ammonia (NH<sub>3</sub>) is a promising energy carrier to store and transport renewable energy due to its high energy density (18.6 MJ kg<sup>-1</sup>, containing 17.6 wt% H<sub>2</sub>) and mature storage and transportation. Ammonia-fuelled solid oxide fuel cells (NH<sub>3</sub>-SOFC) show multiple clean energy applications due to their high efficiency, near-zero CO<sub>2</sub> emissions, and flexible integration. This work delineates the current status and prospects of integrated NH<sub>3</sub>-SOFC technology towards a green ammonia economy by investigating its operating principle, system integration, and cost-competitiveness. Technoeconomic analysis results suggest that the levelized cost of electricity (LCOE) for NH<sub>3</sub>-SOFC is approximately 0.24 $ kWh<sup>-1</sup>. In addition, ammonia has demonstrated a high potential as a green shipping fuel because of its carbon-free and low flammability characteristics, while necessitating industry standards and large-scale application scenarios. It has also been indentified that the large-scale application of NH<sub>3</sub>-SOFC largely depends on the reduction in capital cost, electrode materials improvement and volumetric power density increase.</div></div>\",\"PeriodicalId\":307,\"journal\":{\"name\":\"EnergyChem\",\"volume\":\"7 5\",\"pages\":\"Article 100167\"},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EnergyChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589778025000247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778025000247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A green ammonia utilization pathway: Integrated ammonia-solid oxide fuel cell systems for efficient power generation
Ammonia (NH3) is a promising energy carrier to store and transport renewable energy due to its high energy density (18.6 MJ kg-1, containing 17.6 wt% H2) and mature storage and transportation. Ammonia-fuelled solid oxide fuel cells (NH3-SOFC) show multiple clean energy applications due to their high efficiency, near-zero CO2 emissions, and flexible integration. This work delineates the current status and prospects of integrated NH3-SOFC technology towards a green ammonia economy by investigating its operating principle, system integration, and cost-competitiveness. Technoeconomic analysis results suggest that the levelized cost of electricity (LCOE) for NH3-SOFC is approximately 0.24 $ kWh-1. In addition, ammonia has demonstrated a high potential as a green shipping fuel because of its carbon-free and low flammability characteristics, while necessitating industry standards and large-scale application scenarios. It has also been indentified that the large-scale application of NH3-SOFC largely depends on the reduction in capital cost, electrode materials improvement and volumetric power density increase.
期刊介绍:
EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage