{"title":"涠洲岛浅海礁海洋酸度、CO2通量和代谢率的动态:浮标观测研究","authors":"Xu Dong , Baohong Chen , Jianjia Wang , Xinqing Zheng","doi":"10.1016/j.marchem.2025.104549","DOIUrl":null,"url":null,"abstract":"<div><div>The metabolic processes of calcification and production serve as crucial indicators of how environmental changes impact reef health. Previous studies suggest that Net Ecosystem Production (NEP) primarily drives Net Ecosystem Calcification (NEC) in the short-term. However, the functional relationship between these two carbon metabolisms remains poorly understood. We employed a mooring buoy approach to obtain simultaneous, high-frequency data of seawater pH, aragonite saturation state, CO<sub>2</sub> fluxes, and carbon metabolic rates over a coral reef on Weizhou Island for 37 consecutive days. Our findings revealed a strong linear correlation between NEC and NEP across both diel cycles and day-to-day timescales—this relationship held even when analyzing nighttime periods alone. This indicates an intrinsic link between carbon metabolisms that can operate independently of light. Furthermore, we observed predominantly negative daily NEC and NEP values, indicating persistent net CaCO<sub>3</sub> dissolution and net heterotrophy across the studied reef for over weeks. Our results suggest that CaCO<sub>3</sub> dissolution is more likely to occur in waters with heterotrophic conditions, implying that heterotrophy contributes to CaCO<sub>3</sub> dissolution. This tight coupling could be explained by reef sediment dissolution through the Carbonate Critical Threshold (CCT) mechanism. Our study highlights the significance of ambient respiration in driving reef ecosystem-scale CaCO<sub>3</sub> dissolution, especially in reefs with low live hard coral coverage. This process releases alkalinity into the seawater, helping to neutralize respiration-induced acidification. Additionally, we identified a higher rate of respiratory CO₂ release as the primary driver of CO<sub>2</sub> emissions from the studied reef.</div></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"272 ","pages":"Article 104549"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of ocean acidity, CO2 fluxes and metabolic rates on a shallow reef of Weizhou Island: a buoy-based observational study\",\"authors\":\"Xu Dong , Baohong Chen , Jianjia Wang , Xinqing Zheng\",\"doi\":\"10.1016/j.marchem.2025.104549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The metabolic processes of calcification and production serve as crucial indicators of how environmental changes impact reef health. Previous studies suggest that Net Ecosystem Production (NEP) primarily drives Net Ecosystem Calcification (NEC) in the short-term. However, the functional relationship between these two carbon metabolisms remains poorly understood. We employed a mooring buoy approach to obtain simultaneous, high-frequency data of seawater pH, aragonite saturation state, CO<sub>2</sub> fluxes, and carbon metabolic rates over a coral reef on Weizhou Island for 37 consecutive days. Our findings revealed a strong linear correlation between NEC and NEP across both diel cycles and day-to-day timescales—this relationship held even when analyzing nighttime periods alone. This indicates an intrinsic link between carbon metabolisms that can operate independently of light. Furthermore, we observed predominantly negative daily NEC and NEP values, indicating persistent net CaCO<sub>3</sub> dissolution and net heterotrophy across the studied reef for over weeks. Our results suggest that CaCO<sub>3</sub> dissolution is more likely to occur in waters with heterotrophic conditions, implying that heterotrophy contributes to CaCO<sub>3</sub> dissolution. This tight coupling could be explained by reef sediment dissolution through the Carbonate Critical Threshold (CCT) mechanism. Our study highlights the significance of ambient respiration in driving reef ecosystem-scale CaCO<sub>3</sub> dissolution, especially in reefs with low live hard coral coverage. This process releases alkalinity into the seawater, helping to neutralize respiration-induced acidification. Additionally, we identified a higher rate of respiratory CO₂ release as the primary driver of CO<sub>2</sub> emissions from the studied reef.</div></div>\",\"PeriodicalId\":18219,\"journal\":{\"name\":\"Marine Chemistry\",\"volume\":\"272 \",\"pages\":\"Article 104549\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304420325000659\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Chemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304420325000659","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamics of ocean acidity, CO2 fluxes and metabolic rates on a shallow reef of Weizhou Island: a buoy-based observational study
The metabolic processes of calcification and production serve as crucial indicators of how environmental changes impact reef health. Previous studies suggest that Net Ecosystem Production (NEP) primarily drives Net Ecosystem Calcification (NEC) in the short-term. However, the functional relationship between these two carbon metabolisms remains poorly understood. We employed a mooring buoy approach to obtain simultaneous, high-frequency data of seawater pH, aragonite saturation state, CO2 fluxes, and carbon metabolic rates over a coral reef on Weizhou Island for 37 consecutive days. Our findings revealed a strong linear correlation between NEC and NEP across both diel cycles and day-to-day timescales—this relationship held even when analyzing nighttime periods alone. This indicates an intrinsic link between carbon metabolisms that can operate independently of light. Furthermore, we observed predominantly negative daily NEC and NEP values, indicating persistent net CaCO3 dissolution and net heterotrophy across the studied reef for over weeks. Our results suggest that CaCO3 dissolution is more likely to occur in waters with heterotrophic conditions, implying that heterotrophy contributes to CaCO3 dissolution. This tight coupling could be explained by reef sediment dissolution through the Carbonate Critical Threshold (CCT) mechanism. Our study highlights the significance of ambient respiration in driving reef ecosystem-scale CaCO3 dissolution, especially in reefs with low live hard coral coverage. This process releases alkalinity into the seawater, helping to neutralize respiration-induced acidification. Additionally, we identified a higher rate of respiratory CO₂ release as the primary driver of CO2 emissions from the studied reef.
期刊介绍:
Marine Chemistry is an international medium for the publication of original studies and occasional reviews in the field of chemistry in the marine environment, with emphasis on the dynamic approach. The journal endeavours to cover all aspects, from chemical processes to theoretical and experimental work, and, by providing a central channel of communication, to speed the flow of information in this relatively new and rapidly expanding discipline.