{"title":"左右对称模型中中微子的磁矩和i型和ii型跷跷板的相互作用","authors":"Vivek Banerjee, Sasmita Mishra","doi":"10.1016/j.nuclphysb.2025.117039","DOIUrl":null,"url":null,"abstract":"<div><div>In left-right symmetric models, the Majorana coupling matrix, <em>f</em>, and hence the right-handed neutrino (RHN) mass matrix, admits eight solutions assuming the form of the Dirac coupling matrix is known. Additionally, the coupling matrix depends on the parity-breaking scale, <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>, as a new physics scale. RHNs being Majorana in nature can possess a transition magnetic moment (TMM). Neutrino magnetic moments are inherently related to neutrino masses, as neutrino masses imply neutrino magnetic moments. We study, along with small neutrino TMM, the heavy RHN transition magnetic moment contributions to muon <span><math><mi>g</mi><mo>−</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mo>(</mo><mi>g</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>μ</mi></mrow></msub></math></span> anomaly for all eight solutions of <em>f</em>. We find, of the eight solutions, only two solutions of <em>f</em> matrix contribute to the <span><math><msub><mrow><mo>(</mo><mi>g</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>μ</mi></mrow></msub></math></span> in the experimental predicted range. The range of <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span> in these cases is found to be <span><math><mn>3.4</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>1.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>4</mn></mrow></msup></math></span> GeV. For a complimentary check, we also study TMM-induced neutrinoless double beta decay (<span><math><mn>0</mn><mi>ν</mi><mi>β</mi><mi>β</mi></math></span>), for the same set of choice of parameters. While certain parameter choices allow RHNs to explain the <span><math><msub><mrow><mo>(</mo><mi>g</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>μ</mi></mrow></msub></math></span> anomaly, the same configurations lead to an extremely long half-life for <span><math><mn>0</mn><mi>ν</mi><mi>β</mi><mi>β</mi></math></span> decay, well beyond experimental reach. Even under extreme magnetic field enhancements, the half-life decreases only marginally, reinforcing the dominance of weak interaction vertices over TMM contributions in <span><math><mn>0</mn><mi>ν</mi><mi>β</mi><mi>β</mi></math></span> decay.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1018 ","pages":"Article 117039"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic moment of neutrinos in a left-right symmetric model and Interplay of type-I and type-II seesaw\",\"authors\":\"Vivek Banerjee, Sasmita Mishra\",\"doi\":\"10.1016/j.nuclphysb.2025.117039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In left-right symmetric models, the Majorana coupling matrix, <em>f</em>, and hence the right-handed neutrino (RHN) mass matrix, admits eight solutions assuming the form of the Dirac coupling matrix is known. Additionally, the coupling matrix depends on the parity-breaking scale, <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>, as a new physics scale. RHNs being Majorana in nature can possess a transition magnetic moment (TMM). Neutrino magnetic moments are inherently related to neutrino masses, as neutrino masses imply neutrino magnetic moments. We study, along with small neutrino TMM, the heavy RHN transition magnetic moment contributions to muon <span><math><mi>g</mi><mo>−</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mo>(</mo><mi>g</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>μ</mi></mrow></msub></math></span> anomaly for all eight solutions of <em>f</em>. We find, of the eight solutions, only two solutions of <em>f</em> matrix contribute to the <span><math><msub><mrow><mo>(</mo><mi>g</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>μ</mi></mrow></msub></math></span> in the experimental predicted range. The range of <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span> in these cases is found to be <span><math><mn>3.4</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>1.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>4</mn></mrow></msup></math></span> GeV. For a complimentary check, we also study TMM-induced neutrinoless double beta decay (<span><math><mn>0</mn><mi>ν</mi><mi>β</mi><mi>β</mi></math></span>), for the same set of choice of parameters. While certain parameter choices allow RHNs to explain the <span><math><msub><mrow><mo>(</mo><mi>g</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>μ</mi></mrow></msub></math></span> anomaly, the same configurations lead to an extremely long half-life for <span><math><mn>0</mn><mi>ν</mi><mi>β</mi><mi>β</mi></math></span> decay, well beyond experimental reach. Even under extreme magnetic field enhancements, the half-life decreases only marginally, reinforcing the dominance of weak interaction vertices over TMM contributions in <span><math><mn>0</mn><mi>ν</mi><mi>β</mi><mi>β</mi></math></span> decay.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1018 \",\"pages\":\"Article 117039\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321325002482\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325002482","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Magnetic moment of neutrinos in a left-right symmetric model and Interplay of type-I and type-II seesaw
In left-right symmetric models, the Majorana coupling matrix, f, and hence the right-handed neutrino (RHN) mass matrix, admits eight solutions assuming the form of the Dirac coupling matrix is known. Additionally, the coupling matrix depends on the parity-breaking scale, , as a new physics scale. RHNs being Majorana in nature can possess a transition magnetic moment (TMM). Neutrino magnetic moments are inherently related to neutrino masses, as neutrino masses imply neutrino magnetic moments. We study, along with small neutrino TMM, the heavy RHN transition magnetic moment contributions to muon , anomaly for all eight solutions of f. We find, of the eight solutions, only two solutions of f matrix contribute to the in the experimental predicted range. The range of in these cases is found to be GeV. For a complimentary check, we also study TMM-induced neutrinoless double beta decay (), for the same set of choice of parameters. While certain parameter choices allow RHNs to explain the anomaly, the same configurations lead to an extremely long half-life for decay, well beyond experimental reach. Even under extreme magnetic field enhancements, the half-life decreases only marginally, reinforcing the dominance of weak interaction vertices over TMM contributions in decay.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.