ZnO多功能水泥浆体。CoO和钡铁氧体核壳纳米结构:机械、抗菌和辐射屏蔽性能

Mahmoud Gharieb , H.M. Khater , Wageeh Ramadan , Walaa M. Abd El-Gawad
{"title":"ZnO多功能水泥浆体。CoO和钡铁氧体核壳纳米结构:机械、抗菌和辐射屏蔽性能","authors":"Mahmoud Gharieb ,&nbsp;H.M. Khater ,&nbsp;Wageeh Ramadan ,&nbsp;Walaa M. Abd El-Gawad","doi":"10.1016/j.nxmate.2025.101000","DOIUrl":null,"url":null,"abstract":"<div><div>The research explores innovative multifunctional cement pastes by integrating modified blast furnace slag by precipitating a thin layer of nano-ZnO.CoO or nano-barium ferrite on its surface, forming core-shell structures (ZnCo-slag and BaFe-slag), aiming to provide enhanced mechanical properties alongside antimicrobial and radiation shielding capabilities. Key findings reveal that cement pastes with 10 % ZnCo-slag achieved a notable 6 % increase in mechanical strength over 5 % ZnCo-slag and a 3 % advantage over 15 % ZnCo-slag. Moreover, cement pastes with 10 % BaFe slag increased the strength by 4 % and 5 % over the mixes containing 5 % BaFe slag and 15 % BaFe slag, respectively. In terms of antimicrobial activity, ZnCo-slag exhibited significant inhibition zones of 15 mm, 17 mm, and 25 mm against <em>Escherichia coli, Staphylococcus aureus, and Candida albicans,</em> respectively, while BaFe-slag surpassed these with zones of 11 mm, 20 mm, and 26 mm. Additionally, the 10 % BaFe-slag formulation demonstrated exceptional gamma radiation attenuation, improving by 11.8 % at 0.662 MeV, 13.2 % at 1.173 MeV, and 10.8 % at 1.333 MeV compared to ordinary Portland cement. This study highlights the potential of repurposing blast furnace slag into advanced materials that not only enhance mechanical strength but also provide antimicrobial properties and effective radiation shielding, combining sustainability with cost efficiency.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"9 ","pages":"Article 101000"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional cement pastes with ZnO.CoO and barium ferrite core-shell nanostructures: mechanical, antimicrobial, and radiation shielding properties\",\"authors\":\"Mahmoud Gharieb ,&nbsp;H.M. Khater ,&nbsp;Wageeh Ramadan ,&nbsp;Walaa M. Abd El-Gawad\",\"doi\":\"10.1016/j.nxmate.2025.101000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The research explores innovative multifunctional cement pastes by integrating modified blast furnace slag by precipitating a thin layer of nano-ZnO.CoO or nano-barium ferrite on its surface, forming core-shell structures (ZnCo-slag and BaFe-slag), aiming to provide enhanced mechanical properties alongside antimicrobial and radiation shielding capabilities. Key findings reveal that cement pastes with 10 % ZnCo-slag achieved a notable 6 % increase in mechanical strength over 5 % ZnCo-slag and a 3 % advantage over 15 % ZnCo-slag. Moreover, cement pastes with 10 % BaFe slag increased the strength by 4 % and 5 % over the mixes containing 5 % BaFe slag and 15 % BaFe slag, respectively. In terms of antimicrobial activity, ZnCo-slag exhibited significant inhibition zones of 15 mm, 17 mm, and 25 mm against <em>Escherichia coli, Staphylococcus aureus, and Candida albicans,</em> respectively, while BaFe-slag surpassed these with zones of 11 mm, 20 mm, and 26 mm. Additionally, the 10 % BaFe-slag formulation demonstrated exceptional gamma radiation attenuation, improving by 11.8 % at 0.662 MeV, 13.2 % at 1.173 MeV, and 10.8 % at 1.333 MeV compared to ordinary Portland cement. This study highlights the potential of repurposing blast furnace slag into advanced materials that not only enhance mechanical strength but also provide antimicrobial properties and effective radiation shielding, combining sustainability with cost efficiency.</div></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"9 \",\"pages\":\"Article 101000\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949822825005180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825005180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过沉淀纳米氧化锌薄层来整合改性高炉矿渣,探索创新的多功能水泥浆体。在其表面放置CoO或纳米钡铁氧体,形成核壳结构(znco -渣和bafe -渣),旨在提供增强的机械性能以及抗菌和辐射屏蔽能力。主要研究结果表明,掺量为10 %的锌钴渣的水泥浆体的机械强度比掺量为5 %的锌钴渣提高了6 %,比掺量为15 %的锌钴渣提高了3 %。与含5 %矿渣和15 %矿渣的水泥浆体相比,含10 %矿渣的水泥浆体强度分别提高了4 %和5 %。znco -渣对大肠杆菌、金黄色葡萄球菌和白色念珠菌的抑菌区分别为15 mm、17 mm和25 mm,而bafe -渣对大肠杆菌、金黄色葡萄球菌和白色念珠菌的抑菌区分别为11 mm、20 mm和26 mm。此外,与普通硅酸盐水泥相比,10 %的bafe -渣配方在0.662 MeV时表现出特殊的伽马辐射衰减,在1.173 MeV时提高11.8 %,在1.333 MeV时提高13.2 %,在1.333 MeV时提高10.8 %。这项研究强调了将高炉炉渣转化为先进材料的潜力,这种材料不仅可以提高机械强度,还可以提供抗菌性能和有效的辐射屏蔽,将可持续性与成本效益相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multifunctional cement pastes with ZnO.CoO and barium ferrite core-shell nanostructures: mechanical, antimicrobial, and radiation shielding properties

Multifunctional cement pastes with ZnO.CoO and barium ferrite core-shell nanostructures: mechanical, antimicrobial, and radiation shielding properties
The research explores innovative multifunctional cement pastes by integrating modified blast furnace slag by precipitating a thin layer of nano-ZnO.CoO or nano-barium ferrite on its surface, forming core-shell structures (ZnCo-slag and BaFe-slag), aiming to provide enhanced mechanical properties alongside antimicrobial and radiation shielding capabilities. Key findings reveal that cement pastes with 10 % ZnCo-slag achieved a notable 6 % increase in mechanical strength over 5 % ZnCo-slag and a 3 % advantage over 15 % ZnCo-slag. Moreover, cement pastes with 10 % BaFe slag increased the strength by 4 % and 5 % over the mixes containing 5 % BaFe slag and 15 % BaFe slag, respectively. In terms of antimicrobial activity, ZnCo-slag exhibited significant inhibition zones of 15 mm, 17 mm, and 25 mm against Escherichia coli, Staphylococcus aureus, and Candida albicans, respectively, while BaFe-slag surpassed these with zones of 11 mm, 20 mm, and 26 mm. Additionally, the 10 % BaFe-slag formulation demonstrated exceptional gamma radiation attenuation, improving by 11.8 % at 0.662 MeV, 13.2 % at 1.173 MeV, and 10.8 % at 1.333 MeV compared to ordinary Portland cement. This study highlights the potential of repurposing blast furnace slag into advanced materials that not only enhance mechanical strength but also provide antimicrobial properties and effective radiation shielding, combining sustainability with cost efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信