伽罗瓦环上对角三次方程的解数

IF 1.2 3区 数学 Q1 MATHEMATICS
Na Chen, Haiyan Zhou
{"title":"伽罗瓦环上对角三次方程的解数","authors":"Na Chen,&nbsp;Haiyan Zhou","doi":"10.1016/j.ffa.2025.102711","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>R</mi><mo>=</mo><mi>G</mi><mi>R</mi><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mi>r</mi><mo>)</mo></math></span> be a Galois ring of characteristic <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with cardinality <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn><mi>r</mi></mrow></msup></math></span>, where <em>p</em> is a prime. Let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span>, <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>z</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>z</mi><mo>)</mo></math></span> denote the number of solutions of the equations <span><math><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><mo>…</mo><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>=</mo><mi>z</mi></math></span>, <span><math><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><mo>…</mo><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><mi>z</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>=</mo><mn>0</mn></math></span>, <span><math><mi>p</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><mi>p</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><mo>…</mo><mo>+</mo><mi>p</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>=</mo><mi>z</mi></math></span> and <span><math><mi>p</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><mi>p</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><mo>…</mo><mo>+</mo><mi>p</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><mi>z</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>=</mo><mn>0</mn></math></span>, respectively. In this paper, we show that for any <span><math><mi>z</mi><mo>∈</mo><mi>R</mi></math></span>, the generating functions <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msubsup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> are rational functions in <em>x</em>, and also give explicit expressions for them.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"109 ","pages":"Article 102711"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The number of solutions of diagonal cubic equations over Galois rings GR(p2,r)\",\"authors\":\"Na Chen,&nbsp;Haiyan Zhou\",\"doi\":\"10.1016/j.ffa.2025.102711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>R</mi><mo>=</mo><mi>G</mi><mi>R</mi><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mi>r</mi><mo>)</mo></math></span> be a Galois ring of characteristic <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with cardinality <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn><mi>r</mi></mrow></msup></math></span>, where <em>p</em> is a prime. Let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span>, <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>z</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>z</mi><mo>)</mo></math></span> denote the number of solutions of the equations <span><math><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><mo>…</mo><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>=</mo><mi>z</mi></math></span>, <span><math><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><mo>…</mo><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><mi>z</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>=</mo><mn>0</mn></math></span>, <span><math><mi>p</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><mi>p</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><mo>…</mo><mo>+</mo><mi>p</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>=</mo><mi>z</mi></math></span> and <span><math><mi>p</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><mi>p</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><mo>…</mo><mo>+</mo><mi>p</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>+</mo><mi>z</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>3</mn></mrow></msubsup><mo>=</mo><mn>0</mn></math></span>, respectively. In this paper, we show that for any <span><math><mi>z</mi><mo>∈</mo><mi>R</mi></math></span>, the generating functions <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msubsup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> are rational functions in <em>x</em>, and also give explicit expressions for them.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"109 \",\"pages\":\"Article 102711\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725001418\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001418","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设R=GR(p2, R)是一个特征为p2,基数为p2r的伽罗瓦环,其中p为素数。令An(z)、Bn(z)、An ' (z)和Bn ' (z)分别表示方程x13+x23+…+xn3=z、x13+x23+…+xn3+zxn+13=0、px13+px23+…+pxn3=z和px13+px23+…+pxn3+zxn+13=0的解个数。本文证明了对于任意z∈R,生成函数∑n=1∞An(z)xn,∑n=1∞Bn(z)xn,∑n=1∞An ' (z)xn和∑n=1∞Bn ' (z)xn是x上的有理函数,并给出了它们的显式表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The number of solutions of diagonal cubic equations over Galois rings GR(p2,r)
Let R=GR(p2,r) be a Galois ring of characteristic p2 with cardinality p2r, where p is a prime. Let An(z), Bn(z), An(z) and Bn(z) denote the number of solutions of the equations x13+x23++xn3=z, x13+x23++xn3+zxn+13=0, px13+px23++pxn3=z and px13+px23++pxn3+zxn+13=0, respectively. In this paper, we show that for any zR, the generating functions n=1An(z)xn, n=1Bn(z)xn, n=1An(z)xn and n=1Bn(z)xn are rational functions in x, and also give explicit expressions for them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信