可解释信用决策的稀疏增强加性交互神经网络

IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xingyu Lan , Hong Fan , Wanan Liu , Meng Xia , Kai Guo
{"title":"可解释信用决策的稀疏增强加性交互神经网络","authors":"Xingyu Lan ,&nbsp;Hong Fan ,&nbsp;Wanan Liu ,&nbsp;Meng Xia ,&nbsp;Kai Guo","doi":"10.1016/j.dss.2025.114507","DOIUrl":null,"url":null,"abstract":"<div><div>Intelligent credit decision systems are crucial for financial institutions’ risk management, aiming to mitigate credit risk. While deep learning models offer high predictive accuracy, their opacity hinders decision support. Neural Additive Models (NAMs) offer feature-level interpretability but fail to capture complex interactions among credit risk factors. To enhance both accuracy and interpretability, we propose the Sparse-Enhanced Additive Interaction Neural Network (SAINTNet) for explainable credit scoring. SAINTNet advances NAM’s framework with dual-node additive modules and adaptive sparse feature selection, enabling autonomous feature learning. Leveraging entmax sparsity and optimized temperature settings, SAINTNet: (1) maintains interpretability, particularly for credit feature interactions; (2) achieves superior accuracy compared to black-box models. Experiments on four credit datasets demonstrate SAINTNet’s superior performance and systematic interpretability through global feature importance, local decision analysis, and interaction visualization, improving decision audits in high-risk credit scenarios.</div></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"197 ","pages":"Article 114507"},"PeriodicalIF":6.8000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse-enhanced additive interaction neural network for interpretable credit decision\",\"authors\":\"Xingyu Lan ,&nbsp;Hong Fan ,&nbsp;Wanan Liu ,&nbsp;Meng Xia ,&nbsp;Kai Guo\",\"doi\":\"10.1016/j.dss.2025.114507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Intelligent credit decision systems are crucial for financial institutions’ risk management, aiming to mitigate credit risk. While deep learning models offer high predictive accuracy, their opacity hinders decision support. Neural Additive Models (NAMs) offer feature-level interpretability but fail to capture complex interactions among credit risk factors. To enhance both accuracy and interpretability, we propose the Sparse-Enhanced Additive Interaction Neural Network (SAINTNet) for explainable credit scoring. SAINTNet advances NAM’s framework with dual-node additive modules and adaptive sparse feature selection, enabling autonomous feature learning. Leveraging entmax sparsity and optimized temperature settings, SAINTNet: (1) maintains interpretability, particularly for credit feature interactions; (2) achieves superior accuracy compared to black-box models. Experiments on four credit datasets demonstrate SAINTNet’s superior performance and systematic interpretability through global feature importance, local decision analysis, and interaction visualization, improving decision audits in high-risk credit scenarios.</div></div>\",\"PeriodicalId\":55181,\"journal\":{\"name\":\"Decision Support Systems\",\"volume\":\"197 \",\"pages\":\"Article 114507\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Support Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167923625001083\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923625001083","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

智能信贷决策系统是金融机构风险管理的关键,其目的是降低信贷风险。虽然深度学习模型提供了很高的预测准确性,但它们的不透明性阻碍了决策支持。神经加性模型(NAMs)提供特征级的可解释性,但无法捕获信用风险因素之间复杂的相互作用。为了提高准确性和可解释性,我们提出了稀疏增强的加性交互神经网络(SAINTNet)用于可解释的信用评分。SAINTNet通过双节点加性模块和自适应稀疏特征选择改进了NAM框架,实现了自主特征学习。利用entmax稀疏性和优化的温度设置,SAINTNet:(1)保持可解释性,特别是对于信用特征交互;(2)与黑箱模型相比,精度更高。在四个信用数据集上进行的实验表明,SAINTNet通过全局特征重要性、局部决策分析和交互可视化等方法,具有卓越的性能和系统的可解释性,改善了高风险信用场景下的决策审计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse-enhanced additive interaction neural network for interpretable credit decision
Intelligent credit decision systems are crucial for financial institutions’ risk management, aiming to mitigate credit risk. While deep learning models offer high predictive accuracy, their opacity hinders decision support. Neural Additive Models (NAMs) offer feature-level interpretability but fail to capture complex interactions among credit risk factors. To enhance both accuracy and interpretability, we propose the Sparse-Enhanced Additive Interaction Neural Network (SAINTNet) for explainable credit scoring. SAINTNet advances NAM’s framework with dual-node additive modules and adaptive sparse feature selection, enabling autonomous feature learning. Leveraging entmax sparsity and optimized temperature settings, SAINTNet: (1) maintains interpretability, particularly for credit feature interactions; (2) achieves superior accuracy compared to black-box models. Experiments on four credit datasets demonstrate SAINTNet’s superior performance and systematic interpretability through global feature importance, local decision analysis, and interaction visualization, improving decision audits in high-risk credit scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Decision Support Systems
Decision Support Systems 工程技术-计算机:人工智能
CiteScore
14.70
自引率
6.70%
发文量
119
审稿时长
13 months
期刊介绍: The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信