M2WLLM:基于大语言模型的多模态多任务超短期风电预测算法

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hang Fan , Mingxuan Li , Zuhan Zhang , Long Cheng , Yujian Ye , Weican Liu , Dunnan Liu
{"title":"M2WLLM:基于大语言模型的多模态多任务超短期风电预测算法","authors":"Hang Fan ,&nbsp;Mingxuan Li ,&nbsp;Zuhan Zhang ,&nbsp;Long Cheng ,&nbsp;Yujian Ye ,&nbsp;Weican Liu ,&nbsp;Dunnan Liu","doi":"10.1016/j.inffus.2025.103541","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of wind energy into power grids necessitates accurate ultra-short-term wind power forecasting to ensure grid stability and optimize resource allocation. This study introduces M2WLLM, an innovative model that leverages the capabilities of Large Language Models (LLMs) for predicting wind power output at granular time intervals. M2WLLM overcomes the limitations of traditional and deep learning methods by seamlessly integrating textual information and temporal numerical data, significantly improving wind power forecasting accuracy through multi-modal data. Its architecture features a Prompt Embedder and a Data Embedder, enabling an effective fusion of textual prompts and numerical inputs within the LLMs framework. The Semantic Augmenter within the Data Embedder translates temporal data into a format that the LLMs can comprehend, enabling it to extract latent features and improve prediction accuracy. The empirical evaluations conducted on wind farm data from three Chinese provinces demonstrate that M2WLLM consistently outperforms existing methods, such as Generative Pre-trained Transforme for Time Series (GPT4TS), across various datasets and prediction horizons. The results highlight LLMs’ ability to enhance accuracy and robustness in ultra-short-term forecasting and showcase their strong few-shot learning capabilities.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"126 ","pages":"Article 103541"},"PeriodicalIF":15.5000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M2WLLM: Multi-modal multi-task ultra-short-term wind power prediction algorithm based on large language model\",\"authors\":\"Hang Fan ,&nbsp;Mingxuan Li ,&nbsp;Zuhan Zhang ,&nbsp;Long Cheng ,&nbsp;Yujian Ye ,&nbsp;Weican Liu ,&nbsp;Dunnan Liu\",\"doi\":\"10.1016/j.inffus.2025.103541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integration of wind energy into power grids necessitates accurate ultra-short-term wind power forecasting to ensure grid stability and optimize resource allocation. This study introduces M2WLLM, an innovative model that leverages the capabilities of Large Language Models (LLMs) for predicting wind power output at granular time intervals. M2WLLM overcomes the limitations of traditional and deep learning methods by seamlessly integrating textual information and temporal numerical data, significantly improving wind power forecasting accuracy through multi-modal data. Its architecture features a Prompt Embedder and a Data Embedder, enabling an effective fusion of textual prompts and numerical inputs within the LLMs framework. The Semantic Augmenter within the Data Embedder translates temporal data into a format that the LLMs can comprehend, enabling it to extract latent features and improve prediction accuracy. The empirical evaluations conducted on wind farm data from three Chinese provinces demonstrate that M2WLLM consistently outperforms existing methods, such as Generative Pre-trained Transforme for Time Series (GPT4TS), across various datasets and prediction horizons. The results highlight LLMs’ ability to enhance accuracy and robustness in ultra-short-term forecasting and showcase their strong few-shot learning capabilities.</div></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"126 \",\"pages\":\"Article 103541\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156625352500613X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156625352500613X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

风电并网需要准确的超短期风电预测,以保证电网稳定,优化资源配置。本研究介绍了M2WLLM,这是一种利用大语言模型(llm)的功能来预测粒度时间间隔风电输出的创新模型。M2WLLM克服了传统和深度学习方法的局限性,将文本信息与时态数值数据无缝集成,显著提高了多模态数据的风电预测精度。它的架构具有提示嵌入器和数据嵌入器,可以在llm框架内有效地融合文本提示和数字输入。数据嵌入器中的语义增强器将时间数据转换为llm可以理解的格式,使其能够提取潜在特征并提高预测精度。对来自中国三个省份的风电场数据进行的实证评估表明,M2WLLM在各种数据集和预测范围内始终优于现有方法,如生成预训练时间序列变换(GPT4TS)。结果表明llm在超短期预测中提高了准确性和鲁棒性,并展示了其强大的少次学习能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
M2WLLM: Multi-modal multi-task ultra-short-term wind power prediction algorithm based on large language model
The integration of wind energy into power grids necessitates accurate ultra-short-term wind power forecasting to ensure grid stability and optimize resource allocation. This study introduces M2WLLM, an innovative model that leverages the capabilities of Large Language Models (LLMs) for predicting wind power output at granular time intervals. M2WLLM overcomes the limitations of traditional and deep learning methods by seamlessly integrating textual information and temporal numerical data, significantly improving wind power forecasting accuracy through multi-modal data. Its architecture features a Prompt Embedder and a Data Embedder, enabling an effective fusion of textual prompts and numerical inputs within the LLMs framework. The Semantic Augmenter within the Data Embedder translates temporal data into a format that the LLMs can comprehend, enabling it to extract latent features and improve prediction accuracy. The empirical evaluations conducted on wind farm data from three Chinese provinces demonstrate that M2WLLM consistently outperforms existing methods, such as Generative Pre-trained Transforme for Time Series (GPT4TS), across various datasets and prediction horizons. The results highlight LLMs’ ability to enhance accuracy and robustness in ultra-short-term forecasting and showcase their strong few-shot learning capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信