提高电池管理系统可靠性的增强实时集总参数模型

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Mehrdad Babazadeh, James Marco, Mona Faraji Niri
{"title":"提高电池管理系统可靠性的增强实时集总参数模型","authors":"Mehrdad Babazadeh,&nbsp;James Marco,&nbsp;Mona Faraji Niri","doi":"10.1016/j.est.2025.117717","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and computationally efficient battery management systems (BMSs) rely heavily on lumped-parameter models for real-time monitoring and control. However, these models often fail to maintain precision under rapidly fluctuating operating conditions due to limitations in conventional parameter identification methods. This paper presents a new framework that augments a modified equivalent circuit model (ECM) with a lumped-parameter thermal representation of a cell (LPTM) and a reliable real-time parameter estimation algorithm. The core novelty of the framework is the new representation of the cell and the Modified Recursive Least Squares (ModRLS) algorithm, which addresses challenges of data saturation, parameter sensitivity, and initial condition uncertainty. Simulations demonstrate a significant improvement in parameter tracking accuracy, with root mean square errors as low as 3% not only for key electrical parameters but also thermal ones. The proposed framework minimises the reliance on extensive sensor networks, offering a cost-effective and scalable solution for dynamic applications such as electric vehicles. This work lays the foundation for more reliable and longer-lasting energy storage systems through advanced monitoring.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"132 ","pages":"Article 117717"},"PeriodicalIF":8.9000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmented real-time lumped-parameter model for enhanced reliability in battery management systems\",\"authors\":\"Mehrdad Babazadeh,&nbsp;James Marco,&nbsp;Mona Faraji Niri\",\"doi\":\"10.1016/j.est.2025.117717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate and computationally efficient battery management systems (BMSs) rely heavily on lumped-parameter models for real-time monitoring and control. However, these models often fail to maintain precision under rapidly fluctuating operating conditions due to limitations in conventional parameter identification methods. This paper presents a new framework that augments a modified equivalent circuit model (ECM) with a lumped-parameter thermal representation of a cell (LPTM) and a reliable real-time parameter estimation algorithm. The core novelty of the framework is the new representation of the cell and the Modified Recursive Least Squares (ModRLS) algorithm, which addresses challenges of data saturation, parameter sensitivity, and initial condition uncertainty. Simulations demonstrate a significant improvement in parameter tracking accuracy, with root mean square errors as low as 3% not only for key electrical parameters but also thermal ones. The proposed framework minimises the reliance on extensive sensor networks, offering a cost-effective and scalable solution for dynamic applications such as electric vehicles. This work lays the foundation for more reliable and longer-lasting energy storage systems through advanced monitoring.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"132 \",\"pages\":\"Article 117717\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X25024302\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25024302","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

精确且计算效率高的电池管理系统(bms)在很大程度上依赖于集中参数模型进行实时监测和控制。然而,由于常规参数识别方法的局限性,这些模型往往不能在快速波动的操作条件下保持精度。本文提出了一种新的框架,该框架增加了改进的等效电路模型(ECM),其中包含单元集总参数热表示(LPTM)和可靠的实时参数估计算法。该框架的核心新颖之处在于新的单元表示和改进的递归最小二乘(ModRLS)算法,该算法解决了数据饱和、参数敏感性和初始条件不确定性的挑战。仿真结果表明,该方法在参数跟踪精度上有显著提高,关键电参数和热参数的均方根误差均低至3%。提出的框架最大限度地减少了对广泛的传感器网络的依赖,为电动汽车等动态应用提供了经济高效且可扩展的解决方案。这项工作通过先进的监测为更可靠、更持久的储能系统奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Augmented real-time lumped-parameter model for enhanced reliability in battery management systems
Accurate and computationally efficient battery management systems (BMSs) rely heavily on lumped-parameter models for real-time monitoring and control. However, these models often fail to maintain precision under rapidly fluctuating operating conditions due to limitations in conventional parameter identification methods. This paper presents a new framework that augments a modified equivalent circuit model (ECM) with a lumped-parameter thermal representation of a cell (LPTM) and a reliable real-time parameter estimation algorithm. The core novelty of the framework is the new representation of the cell and the Modified Recursive Least Squares (ModRLS) algorithm, which addresses challenges of data saturation, parameter sensitivity, and initial condition uncertainty. Simulations demonstrate a significant improvement in parameter tracking accuracy, with root mean square errors as low as 3% not only for key electrical parameters but also thermal ones. The proposed framework minimises the reliance on extensive sensor networks, offering a cost-effective and scalable solution for dynamic applications such as electric vehicles. This work lays the foundation for more reliable and longer-lasting energy storage systems through advanced monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信