{"title":"电磁流体动力学和时间周期压力梯度下纳米流体在粗糙表面微通道中的热对流输运","authors":"Jiali Zhang , Guangpu Zhao , Umer Farooq , Jifeng Cui","doi":"10.1016/j.cjph.2025.07.015","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the flow and heat transfer characteristics of nanofluids (water-Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>) in a microchannel with rough surfaces, considering the combined effects of electromagnetohydrodynamics (EMHD) and time-periodic pressure gradient. The analytical solutions of the velocity and temperature fields are derived using the separation of variables, Fourier cosine series expansion, combined with the superposition principle and Duhamel’s principle. Based on this, the Nusselt number and entropy generation are further obtained. Through numerical simulations and theoretical analyses, the convective characteristics and irreversibility within the microchannel are explored in relation to various dimensionless parameters. Key findings demonstrate that increasing the nanoparticle volume fraction (<span><math><mi>ϕ</mi></math></span>) to 0.08 enhances convective heat transfer, elevating the Nusselt number (<span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span>) by 13.37% while reducing total entropy generation by 17.53%. Conversely, a larger roughness parameter (<span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>) degrades thermal performance, at <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>=0.12, total entropy generation increases by 17.04% and <span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span> decreases by 10.76% relative to <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>=0.06, attributed to nanoparticle aggregation and vortex-induced irreversibility. Electromagnetic regulation via the Hartmann number (<span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span>=7<span><math><mo>∼</mo></math></span>9) suppresses the centreline temperature by 60% but reduces <span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span> by 35.4%. Meanwhile, the pressure gradient at high dimensionless frequency (<span><math><mi>Ω</mi></math></span>=60) reduces the oscillation period of entropy generation while decreasing total entropy generation through thermal homogenization. These results offer critical insights for optimizing thermal management in microfluidic systems governed by EMHD.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"97 ","pages":"Pages 323-342"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal convective transport of nanofluids through a microchannel with rough surfaces under electromagnetohydrodynamics and time-periodic pressure gradient\",\"authors\":\"Jiali Zhang , Guangpu Zhao , Umer Farooq , Jifeng Cui\",\"doi\":\"10.1016/j.cjph.2025.07.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the flow and heat transfer characteristics of nanofluids (water-Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>) in a microchannel with rough surfaces, considering the combined effects of electromagnetohydrodynamics (EMHD) and time-periodic pressure gradient. The analytical solutions of the velocity and temperature fields are derived using the separation of variables, Fourier cosine series expansion, combined with the superposition principle and Duhamel’s principle. Based on this, the Nusselt number and entropy generation are further obtained. Through numerical simulations and theoretical analyses, the convective characteristics and irreversibility within the microchannel are explored in relation to various dimensionless parameters. Key findings demonstrate that increasing the nanoparticle volume fraction (<span><math><mi>ϕ</mi></math></span>) to 0.08 enhances convective heat transfer, elevating the Nusselt number (<span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span>) by 13.37% while reducing total entropy generation by 17.53%. Conversely, a larger roughness parameter (<span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>) degrades thermal performance, at <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>=0.12, total entropy generation increases by 17.04% and <span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span> decreases by 10.76% relative to <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>=0.06, attributed to nanoparticle aggregation and vortex-induced irreversibility. Electromagnetic regulation via the Hartmann number (<span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span>=7<span><math><mo>∼</mo></math></span>9) suppresses the centreline temperature by 60% but reduces <span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span> by 35.4%. Meanwhile, the pressure gradient at high dimensionless frequency (<span><math><mi>Ω</mi></math></span>=60) reduces the oscillation period of entropy generation while decreasing total entropy generation through thermal homogenization. These results offer critical insights for optimizing thermal management in microfluidic systems governed by EMHD.</div></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":\"97 \",\"pages\":\"Pages 323-342\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0577907325002825\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907325002825","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermal convective transport of nanofluids through a microchannel with rough surfaces under electromagnetohydrodynamics and time-periodic pressure gradient
This study investigates the flow and heat transfer characteristics of nanofluids (water-AlO) in a microchannel with rough surfaces, considering the combined effects of electromagnetohydrodynamics (EMHD) and time-periodic pressure gradient. The analytical solutions of the velocity and temperature fields are derived using the separation of variables, Fourier cosine series expansion, combined with the superposition principle and Duhamel’s principle. Based on this, the Nusselt number and entropy generation are further obtained. Through numerical simulations and theoretical analyses, the convective characteristics and irreversibility within the microchannel are explored in relation to various dimensionless parameters. Key findings demonstrate that increasing the nanoparticle volume fraction () to 0.08 enhances convective heat transfer, elevating the Nusselt number () by 13.37% while reducing total entropy generation by 17.53%. Conversely, a larger roughness parameter () degrades thermal performance, at =0.12, total entropy generation increases by 17.04% and decreases by 10.76% relative to =0.06, attributed to nanoparticle aggregation and vortex-induced irreversibility. Electromagnetic regulation via the Hartmann number (=79) suppresses the centreline temperature by 60% but reduces by 35.4%. Meanwhile, the pressure gradient at high dimensionless frequency (=60) reduces the oscillation period of entropy generation while decreasing total entropy generation through thermal homogenization. These results offer critical insights for optimizing thermal management in microfluidic systems governed by EMHD.
期刊介绍:
The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics.
The editors welcome manuscripts on:
-General Physics: Statistical and Quantum Mechanics, etc.-
Gravitation and Astrophysics-
Elementary Particles and Fields-
Nuclear Physics-
Atomic, Molecular, and Optical Physics-
Quantum Information and Quantum Computation-
Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks-
Plasma and Beam Physics-
Condensed Matter: Structure, etc.-
Condensed Matter: Electronic Properties, etc.-
Polymer, Soft Matter, Biological, and Interdisciplinary Physics.
CJP publishes regular research papers, feature articles and review papers.