Ehsan Haghighat , Mohammad Hesan Adeli , S. Mohammad Mousavi , Ruben Juanes
{"title":"模拟微裂缝储层溶质运移的神经算子","authors":"Ehsan Haghighat , Mohammad Hesan Adeli , S. Mohammad Mousavi , Ruben Juanes","doi":"10.1016/j.advwatres.2025.105046","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we introduce a novel neural operator, the Solute Transport Operator Network (STONet), to efficiently model contaminant transport in micro-cracked porous media. STONet’s model architecture is specifically designed for this problem and uniquely integrates an enriched DeepONet structure with a transformer-based multi-head attention mechanism, enhancing performance without incurring additional computational overhead compared to existing neural operators. The model combines different networks to encode heterogeneous properties effectively and predict the rate of change of the concentration field to accurately model the transport process. The training data is obtained using finite element (FEM) simulations by random sampling of micro-fracture distributions and applied pressure boundary conditions, which capture diverse scenarios of fracture densities, orientations, apertures, lengths, and balance of pressure-driven to density-driven flow. Our numerical experiments demonstrate that, once trained, STONet achieves accurate predictions, with relative errors typically below 1% compared with FEM simulations while reducing runtime by approximately two orders of magnitude. This type of computational efficiency facilitates building digital twins for rapid assessment of subsurface contamination risks and optimization of environmental remediation strategies. The data and code for the paper are accessible at <span><span>https://github.com/ehsanhaghighat/STONet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"205 ","pages":"Article 105046"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STONet: A neural operator for modeling solute transport in micro-cracked reservoirs\",\"authors\":\"Ehsan Haghighat , Mohammad Hesan Adeli , S. Mohammad Mousavi , Ruben Juanes\",\"doi\":\"10.1016/j.advwatres.2025.105046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we introduce a novel neural operator, the Solute Transport Operator Network (STONet), to efficiently model contaminant transport in micro-cracked porous media. STONet’s model architecture is specifically designed for this problem and uniquely integrates an enriched DeepONet structure with a transformer-based multi-head attention mechanism, enhancing performance without incurring additional computational overhead compared to existing neural operators. The model combines different networks to encode heterogeneous properties effectively and predict the rate of change of the concentration field to accurately model the transport process. The training data is obtained using finite element (FEM) simulations by random sampling of micro-fracture distributions and applied pressure boundary conditions, which capture diverse scenarios of fracture densities, orientations, apertures, lengths, and balance of pressure-driven to density-driven flow. Our numerical experiments demonstrate that, once trained, STONet achieves accurate predictions, with relative errors typically below 1% compared with FEM simulations while reducing runtime by approximately two orders of magnitude. This type of computational efficiency facilitates building digital twins for rapid assessment of subsurface contamination risks and optimization of environmental remediation strategies. The data and code for the paper are accessible at <span><span>https://github.com/ehsanhaghighat/STONet</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":\"205 \",\"pages\":\"Article 105046\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0309170825001605\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170825001605","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
STONet: A neural operator for modeling solute transport in micro-cracked reservoirs
In this work, we introduce a novel neural operator, the Solute Transport Operator Network (STONet), to efficiently model contaminant transport in micro-cracked porous media. STONet’s model architecture is specifically designed for this problem and uniquely integrates an enriched DeepONet structure with a transformer-based multi-head attention mechanism, enhancing performance without incurring additional computational overhead compared to existing neural operators. The model combines different networks to encode heterogeneous properties effectively and predict the rate of change of the concentration field to accurately model the transport process. The training data is obtained using finite element (FEM) simulations by random sampling of micro-fracture distributions and applied pressure boundary conditions, which capture diverse scenarios of fracture densities, orientations, apertures, lengths, and balance of pressure-driven to density-driven flow. Our numerical experiments demonstrate that, once trained, STONet achieves accurate predictions, with relative errors typically below 1% compared with FEM simulations while reducing runtime by approximately two orders of magnitude. This type of computational efficiency facilitates building digital twins for rapid assessment of subsurface contamination risks and optimization of environmental remediation strategies. The data and code for the paper are accessible at https://github.com/ehsanhaghighat/STONet.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes