{"title":"蒙特卡罗计算的应用PHITS的临床质子束微扰校正因子","authors":"Hiromu Ooe , Keisuke Yasui , Yuya Nagake , Kaito Iwase , Yuri Kasugai , Mai Tsutsumi , Yuri Fukuta , Shiyu Hori , Hidetoshi Shimizu , Naoki Hayashi","doi":"10.1016/j.tipsro.2025.100325","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Accurate absolute dosimetry is essential for achieving high-precision proton beam therapy. Consequently, a comprehensive characterization of the ionization chamber’s response properties is necessary.</div></div><div><h3>Purpose</h3><div>This study aimed to evaluate the average <span><math><mrow><msub><mi>f</mi><mi>Q</mi></msub></mrow></math></span> using Monte Carlo (MC) code PHITS to assess uncertainties among different MC simulation tools. Additionally, <span><math><mrow><msub><mi>P</mi><mi>Q</mi></msub></mrow></math></span> values for PTW 30013, NACP-02, and PTW 31013 ionization chambers are calculated using PHITS to provide new reference data for <span><math><mrow><msub><mi>P</mi><mi>Q</mi></msub></mrow></math></span>. Furthermore, a new <span><math><mrow><msub><mi>k</mi><mi>Q</mi></msub></mrow></math></span> factor for PTW 31013 chamber is established using MC method, contributing to advancements in proton beam dosimetry protocols.</div></div><div><h3>Methods</h3><div>Monoenergetic proton beams were employed to calculate <span><math><mrow><msub><mi>f</mi><mi>Q</mi></msub></mrow></math></span>, <span><math><mrow><msub><mi>k</mi><mi>Q</mi></msub></mrow></math></span>, and <span><math><mrow><msub><mi>P</mi><mi>Q</mi></msub></mrow></math></span> for Farmer, Semiflex, and plane‐parallel chambers. The absorbed dose deposited within the sensitive volume of each chamber was determined via simulations employing PHITS, thereby providing the basis for the estimation of these factors. Computed <span><math><mrow><msub><mi>f</mi><mi>Q</mi></msub></mrow></math></span> values were compared with previous reports, while <span><math><mrow><msub><mi>k</mi><mi>Q</mi></msub></mrow></math></span> and <span><math><mrow><msub><mi>P</mi><mi>Q</mi></msub></mrow></math></span> were benchmarked against literature and Technical Reports Series No. 398 (TRS-398) Rev.1 guideline.</div></div><div><h3>Results</h3><div>Incorporating PHITS‐derived <span><math><mrow><msub><mi>f</mi><mi>Q</mi></msub></mrow></math></span> values reduced the uncertainty of <span><math><mrow><msubsup><mover><mrow><mi>f</mi></mrow><mrow><mo>¯</mo></mrow></mover><mrow><mi>Q</mi></mrow><mrow><mi>P</mi><mi>H</mi><mi>I</mi><mi>T</mi><mi>S</mi></mrow></msubsup></mrow></math></span> compared to previous findings. The <span><math><mrow><msub><mi>k</mi><mi>Q</mi></msub></mrow></math></span> factor for PTW 31013 followed trends observed in cylindrical chambers with varying sensitive volumes; notably, this study represents the first MC estimation of <span><math><mrow><msub><mi>k</mi><mi>Q</mi></msub></mrow></math></span> for this chamber. <span><math><mrow><msub><mi>P</mi><mi>Q</mi></msub></mrow></math></span> values for values deviated by up to 1.7% from unity.</div></div><div><h3>Conclusion</h3><div>The data generated in this study provide important insights for refining proton beam dosimetry, contributing to the improvement of treatment precision.</div></div>","PeriodicalId":36328,"journal":{"name":"Technical Innovations and Patient Support in Radiation Oncology","volume":"35 ","pages":"Article 100325"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monte Carlo-calculated perturbation correction factors in clinical proton beams using PHITS\",\"authors\":\"Hiromu Ooe , Keisuke Yasui , Yuya Nagake , Kaito Iwase , Yuri Kasugai , Mai Tsutsumi , Yuri Fukuta , Shiyu Hori , Hidetoshi Shimizu , Naoki Hayashi\",\"doi\":\"10.1016/j.tipsro.2025.100325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Accurate absolute dosimetry is essential for achieving high-precision proton beam therapy. Consequently, a comprehensive characterization of the ionization chamber’s response properties is necessary.</div></div><div><h3>Purpose</h3><div>This study aimed to evaluate the average <span><math><mrow><msub><mi>f</mi><mi>Q</mi></msub></mrow></math></span> using Monte Carlo (MC) code PHITS to assess uncertainties among different MC simulation tools. Additionally, <span><math><mrow><msub><mi>P</mi><mi>Q</mi></msub></mrow></math></span> values for PTW 30013, NACP-02, and PTW 31013 ionization chambers are calculated using PHITS to provide new reference data for <span><math><mrow><msub><mi>P</mi><mi>Q</mi></msub></mrow></math></span>. Furthermore, a new <span><math><mrow><msub><mi>k</mi><mi>Q</mi></msub></mrow></math></span> factor for PTW 31013 chamber is established using MC method, contributing to advancements in proton beam dosimetry protocols.</div></div><div><h3>Methods</h3><div>Monoenergetic proton beams were employed to calculate <span><math><mrow><msub><mi>f</mi><mi>Q</mi></msub></mrow></math></span>, <span><math><mrow><msub><mi>k</mi><mi>Q</mi></msub></mrow></math></span>, and <span><math><mrow><msub><mi>P</mi><mi>Q</mi></msub></mrow></math></span> for Farmer, Semiflex, and plane‐parallel chambers. The absorbed dose deposited within the sensitive volume of each chamber was determined via simulations employing PHITS, thereby providing the basis for the estimation of these factors. Computed <span><math><mrow><msub><mi>f</mi><mi>Q</mi></msub></mrow></math></span> values were compared with previous reports, while <span><math><mrow><msub><mi>k</mi><mi>Q</mi></msub></mrow></math></span> and <span><math><mrow><msub><mi>P</mi><mi>Q</mi></msub></mrow></math></span> were benchmarked against literature and Technical Reports Series No. 398 (TRS-398) Rev.1 guideline.</div></div><div><h3>Results</h3><div>Incorporating PHITS‐derived <span><math><mrow><msub><mi>f</mi><mi>Q</mi></msub></mrow></math></span> values reduced the uncertainty of <span><math><mrow><msubsup><mover><mrow><mi>f</mi></mrow><mrow><mo>¯</mo></mrow></mover><mrow><mi>Q</mi></mrow><mrow><mi>P</mi><mi>H</mi><mi>I</mi><mi>T</mi><mi>S</mi></mrow></msubsup></mrow></math></span> compared to previous findings. The <span><math><mrow><msub><mi>k</mi><mi>Q</mi></msub></mrow></math></span> factor for PTW 31013 followed trends observed in cylindrical chambers with varying sensitive volumes; notably, this study represents the first MC estimation of <span><math><mrow><msub><mi>k</mi><mi>Q</mi></msub></mrow></math></span> for this chamber. <span><math><mrow><msub><mi>P</mi><mi>Q</mi></msub></mrow></math></span> values for values deviated by up to 1.7% from unity.</div></div><div><h3>Conclusion</h3><div>The data generated in this study provide important insights for refining proton beam dosimetry, contributing to the improvement of treatment precision.</div></div>\",\"PeriodicalId\":36328,\"journal\":{\"name\":\"Technical Innovations and Patient Support in Radiation Oncology\",\"volume\":\"35 \",\"pages\":\"Article 100325\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Innovations and Patient Support in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405632425000265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Nursing\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Innovations and Patient Support in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405632425000265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Nursing","Score":null,"Total":0}
Monte Carlo-calculated perturbation correction factors in clinical proton beams using PHITS
Background
Accurate absolute dosimetry is essential for achieving high-precision proton beam therapy. Consequently, a comprehensive characterization of the ionization chamber’s response properties is necessary.
Purpose
This study aimed to evaluate the average using Monte Carlo (MC) code PHITS to assess uncertainties among different MC simulation tools. Additionally, values for PTW 30013, NACP-02, and PTW 31013 ionization chambers are calculated using PHITS to provide new reference data for . Furthermore, a new factor for PTW 31013 chamber is established using MC method, contributing to advancements in proton beam dosimetry protocols.
Methods
Monoenergetic proton beams were employed to calculate , , and for Farmer, Semiflex, and plane‐parallel chambers. The absorbed dose deposited within the sensitive volume of each chamber was determined via simulations employing PHITS, thereby providing the basis for the estimation of these factors. Computed values were compared with previous reports, while and were benchmarked against literature and Technical Reports Series No. 398 (TRS-398) Rev.1 guideline.
Results
Incorporating PHITS‐derived values reduced the uncertainty of compared to previous findings. The factor for PTW 31013 followed trends observed in cylindrical chambers with varying sensitive volumes; notably, this study represents the first MC estimation of for this chamber. values for values deviated by up to 1.7% from unity.
Conclusion
The data generated in this study provide important insights for refining proton beam dosimetry, contributing to the improvement of treatment precision.