用于锂离子电池快速充电和耐用石墨阳极的二氟乙酸乙酯添加剂工程

IF 3.3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Bin Li , Wenlin Gong , Mingyao Yang , Si Lin , Yan Liu , Jiayi Su , Jie Zhang , Guocong Liu
{"title":"用于锂离子电池快速充电和耐用石墨阳极的二氟乙酸乙酯添加剂工程","authors":"Bin Li ,&nbsp;Wenlin Gong ,&nbsp;Mingyao Yang ,&nbsp;Si Lin ,&nbsp;Yan Liu ,&nbsp;Jiayi Su ,&nbsp;Jie Zhang ,&nbsp;Guocong Liu","doi":"10.1016/j.ssi.2025.116986","DOIUrl":null,"url":null,"abstract":"<div><div>The practical application of fast-charging lithium-ion batteries is hindered by interfacial instability at graphite anodes, primarily due to uncontrolled electrolyte decomposition and the formation of resistive solid electrolyte interphase (SEI) layers. Herein, we report ethyl difluoroacetate (EDFA) as a fluorinated additive for conventional LiPF₆/EC-EMC electrolytes to address these challenges. Electrochemical measurements demonstrate that EDFA undergoes preferential reduction to form a stable, fluorine-rich SEI, which enhances interfacial stability and facilitates Li<sup>+</sup> transport. As a result, graphite/Li half-cells with EDFA exhibit significantly improved performance, with capacity retention increasing from 81.8 % to 93.4 % after 100 cycles and 3C-rate capacity rising from 49.1 to 99.5 mAh·g<sup>−1</sup>. SEM, TEM, and XPS analyses confirm the formation of a uniform, compact and fluorine-rich SEI that mitigates parasitic reactions and reduces impedance. This work provides a viable strategy to enhance fast-charging performance in commercial battery systems through additive engineering.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116986"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ethyl difluoroacetate additive engineering for fast-charging and durable graphite anodes in lithium-ion batteries\",\"authors\":\"Bin Li ,&nbsp;Wenlin Gong ,&nbsp;Mingyao Yang ,&nbsp;Si Lin ,&nbsp;Yan Liu ,&nbsp;Jiayi Su ,&nbsp;Jie Zhang ,&nbsp;Guocong Liu\",\"doi\":\"10.1016/j.ssi.2025.116986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The practical application of fast-charging lithium-ion batteries is hindered by interfacial instability at graphite anodes, primarily due to uncontrolled electrolyte decomposition and the formation of resistive solid electrolyte interphase (SEI) layers. Herein, we report ethyl difluoroacetate (EDFA) as a fluorinated additive for conventional LiPF₆/EC-EMC electrolytes to address these challenges. Electrochemical measurements demonstrate that EDFA undergoes preferential reduction to form a stable, fluorine-rich SEI, which enhances interfacial stability and facilitates Li<sup>+</sup> transport. As a result, graphite/Li half-cells with EDFA exhibit significantly improved performance, with capacity retention increasing from 81.8 % to 93.4 % after 100 cycles and 3C-rate capacity rising from 49.1 to 99.5 mAh·g<sup>−1</sup>. SEM, TEM, and XPS analyses confirm the formation of a uniform, compact and fluorine-rich SEI that mitigates parasitic reactions and reduces impedance. This work provides a viable strategy to enhance fast-charging performance in commercial battery systems through additive engineering.</div></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"429 \",\"pages\":\"Article 116986\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727382500205X\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727382500205X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

石墨阳极的界面不稳定性阻碍了快速充电锂离子电池的实际应用,这主要是由于不受控制的电解质分解和电阻性固体电解质界面层(SEI)的形成。在此,我们报告将二氟乙酸乙酯(EDFA)作为常规LiPF₆/EC-EMC电解质的氟化添加剂来解决这些挑战。电化学测量表明,EDFA优先还原形成稳定的富氟SEI,增强了界面稳定性,促进了Li+的传输。结果表明,添加EDFA的石墨/锂半电池性能显著提高,循环100次后容量保留率从81.8%提高到93.4%,3c倍率容量从49.1 mAh·g−1提高到99.5 mAh。SEM、TEM和XPS分析证实形成了均匀、致密、富氟的SEI,可以减轻寄生反应并降低阻抗。这项工作为通过增材工程提高商用电池系统的快速充电性能提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ethyl difluoroacetate additive engineering for fast-charging and durable graphite anodes in lithium-ion batteries
The practical application of fast-charging lithium-ion batteries is hindered by interfacial instability at graphite anodes, primarily due to uncontrolled electrolyte decomposition and the formation of resistive solid electrolyte interphase (SEI) layers. Herein, we report ethyl difluoroacetate (EDFA) as a fluorinated additive for conventional LiPF₆/EC-EMC electrolytes to address these challenges. Electrochemical measurements demonstrate that EDFA undergoes preferential reduction to form a stable, fluorine-rich SEI, which enhances interfacial stability and facilitates Li+ transport. As a result, graphite/Li half-cells with EDFA exhibit significantly improved performance, with capacity retention increasing from 81.8 % to 93.4 % after 100 cycles and 3C-rate capacity rising from 49.1 to 99.5 mAh·g−1. SEM, TEM, and XPS analyses confirm the formation of a uniform, compact and fluorine-rich SEI that mitigates parasitic reactions and reduces impedance. This work provides a viable strategy to enhance fast-charging performance in commercial battery systems through additive engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信