{"title":"优化Na2Ti3O7纳米线合成条件,实现BaTiO3纳米线的可靠生产","authors":"Sakhavat Dadashov , Ender Suvaci","doi":"10.1016/j.oceram.2025.100827","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a two-step hydrothermal synthesis method involving the development of a precursor interphase and its conversion into multifunctional BaTiO₃ nanowires was employed. Na₂Ti₃O₇ powders were developed as the precursor intermediate phase, and the synthesis conditions were optimized by investigating the effects of experimental parameters such as the NaOH:TiO₂ mole ratio, reaction temperature, and stirring rate on the structure and phase composition of the precursor. By adjusting the experimental parameters, the precursor intermediate phase with the desired phase composition and nanowire morphology was successfully obtained. It was observed that varying the NaOH:TiO₂ ratio from 2:1 to 64:1 had a significant impact on the phase development and morphology of the intermediate phase. The precursor intermediate phase was successfully converted into BaTiO₃ nanowires via a second hydrothermal reaction. XRD, SEM, EDX, TG and FTIR analyses confirmed that obtained BaTiO<sub>3</sub> nanowires had a high aspect ratio and single-phase composition.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"23 ","pages":"Article 100827"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Na2Ti3O7 nanowire synthesis conditions for reliable BaTiO3 nanowires production\",\"authors\":\"Sakhavat Dadashov , Ender Suvaci\",\"doi\":\"10.1016/j.oceram.2025.100827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, a two-step hydrothermal synthesis method involving the development of a precursor interphase and its conversion into multifunctional BaTiO₃ nanowires was employed. Na₂Ti₃O₇ powders were developed as the precursor intermediate phase, and the synthesis conditions were optimized by investigating the effects of experimental parameters such as the NaOH:TiO₂ mole ratio, reaction temperature, and stirring rate on the structure and phase composition of the precursor. By adjusting the experimental parameters, the precursor intermediate phase with the desired phase composition and nanowire morphology was successfully obtained. It was observed that varying the NaOH:TiO₂ ratio from 2:1 to 64:1 had a significant impact on the phase development and morphology of the intermediate phase. The precursor intermediate phase was successfully converted into BaTiO₃ nanowires via a second hydrothermal reaction. XRD, SEM, EDX, TG and FTIR analyses confirmed that obtained BaTiO<sub>3</sub> nanowires had a high aspect ratio and single-phase composition.</div></div>\",\"PeriodicalId\":34140,\"journal\":{\"name\":\"Open Ceramics\",\"volume\":\"23 \",\"pages\":\"Article 100827\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266653952500094X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266653952500094X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Optimization of Na2Ti3O7 nanowire synthesis conditions for reliable BaTiO3 nanowires production
In this study, a two-step hydrothermal synthesis method involving the development of a precursor interphase and its conversion into multifunctional BaTiO₃ nanowires was employed. Na₂Ti₃O₇ powders were developed as the precursor intermediate phase, and the synthesis conditions were optimized by investigating the effects of experimental parameters such as the NaOH:TiO₂ mole ratio, reaction temperature, and stirring rate on the structure and phase composition of the precursor. By adjusting the experimental parameters, the precursor intermediate phase with the desired phase composition and nanowire morphology was successfully obtained. It was observed that varying the NaOH:TiO₂ ratio from 2:1 to 64:1 had a significant impact on the phase development and morphology of the intermediate phase. The precursor intermediate phase was successfully converted into BaTiO₃ nanowires via a second hydrothermal reaction. XRD, SEM, EDX, TG and FTIR analyses confirmed that obtained BaTiO3 nanowires had a high aspect ratio and single-phase composition.