超长结构基元诱导的低对称二维Ta2PtSe7用于10.6µm的柔性长波红外光电探测。

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hao Yu,Chang Shen,Zehao Yu,Jinge Pei,Yongjiao Pan,Ziqi Huang,Weina Zhao,Yunshan Zhao,Wanfu Shen,Chunguang Hu,Chun Du,Peng Yu,Guowei Yang
{"title":"超长结构基元诱导的低对称二维Ta2PtSe7用于10.6µm的柔性长波红外光电探测。","authors":"Hao Yu,Chang Shen,Zehao Yu,Jinge Pei,Yongjiao Pan,Ziqi Huang,Weina Zhao,Yunshan Zhao,Wanfu Shen,Chunguang Hu,Chun Du,Peng Yu,Guowei Yang","doi":"10.1002/adma.202508255","DOIUrl":null,"url":null,"abstract":"The limited ability of traditional 2D anisotropic materials to meet next-generation anisotropic device demands necessitates innovative design strategies. To address this challenge, a symmetry-reduction approach is proposed that enhances in-plane anisotropy by extending structural motifs to lower crystal symmetry. Implementing this design principle, a novel van der Waals material, Ta2PtSe7 atomic layers is successfully developed, featuring record-breaking [Ta4Pt2Se14] structural motifs with an unprecedented length of 20.1 Å. This unique architecture endows Ta2PtSe7 with remarkable intrinsic in-plane anisotropy, manifesting in strongly direction-dependent optical and electrical characteristics. The developed Ta2PtSe7-based photodetector demonstrates exceptional broadband responsiveness across an expansive spectral range from visible to long-wavelength infrared (LWIR; 671 nm-10.6 µm). Particularly noteworthy is its outstanding performance under low operating voltage (0.1 V), achieving a high responsivity of 27 V W-1 at 10.6 µm illumination - a significant advancement in LWIR detection capabilities. Furthermore, flexible device configurations exhibit excellent mechanical robustness, maintaining over 70% of initial photocurrent after 50 bending cycles, demonstrating promising potential for flexible optoelectronics. This study proposes a novel structural motif engineering strategy to design anisotropic materials, exemplified by Ta2PtSe7's exceptional in-plane anisotropy, broadband photoresponse, and mechanical robustness, enabling high-performance anisotropic optoelectronic devices.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"90 1","pages":"e08255"},"PeriodicalIF":26.8000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Symmetry 2D Ta2PtSe7 Induced by Ultralong Structural Motifs for Flexible Long-Wave Infrared Photodetection up to 10.6 µm.\",\"authors\":\"Hao Yu,Chang Shen,Zehao Yu,Jinge Pei,Yongjiao Pan,Ziqi Huang,Weina Zhao,Yunshan Zhao,Wanfu Shen,Chunguang Hu,Chun Du,Peng Yu,Guowei Yang\",\"doi\":\"10.1002/adma.202508255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The limited ability of traditional 2D anisotropic materials to meet next-generation anisotropic device demands necessitates innovative design strategies. To address this challenge, a symmetry-reduction approach is proposed that enhances in-plane anisotropy by extending structural motifs to lower crystal symmetry. Implementing this design principle, a novel van der Waals material, Ta2PtSe7 atomic layers is successfully developed, featuring record-breaking [Ta4Pt2Se14] structural motifs with an unprecedented length of 20.1 Å. This unique architecture endows Ta2PtSe7 with remarkable intrinsic in-plane anisotropy, manifesting in strongly direction-dependent optical and electrical characteristics. The developed Ta2PtSe7-based photodetector demonstrates exceptional broadband responsiveness across an expansive spectral range from visible to long-wavelength infrared (LWIR; 671 nm-10.6 µm). Particularly noteworthy is its outstanding performance under low operating voltage (0.1 V), achieving a high responsivity of 27 V W-1 at 10.6 µm illumination - a significant advancement in LWIR detection capabilities. Furthermore, flexible device configurations exhibit excellent mechanical robustness, maintaining over 70% of initial photocurrent after 50 bending cycles, demonstrating promising potential for flexible optoelectronics. This study proposes a novel structural motif engineering strategy to design anisotropic materials, exemplified by Ta2PtSe7's exceptional in-plane anisotropy, broadband photoresponse, and mechanical robustness, enabling high-performance anisotropic optoelectronic devices.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"90 1\",\"pages\":\"e08255\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202508255\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202508255","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统二维各向异性材料满足下一代各向异性器件需求的能力有限,因此需要创新的设计策略。为了解决这一挑战,提出了一种对称减少方法,通过扩展结构基元以降低晶体对称性来增强面内各向异性。实现这一设计原理,成功开发了一种新型范德瓦尔斯材料Ta2PtSe7原子层,具有破纪录的长度为20.1 Å的[Ta4Pt2Se14]结构基元。这种独特的结构使Ta2PtSe7具有显著的内在面内各向异性,表现出强烈的方向依赖性光学和电学特性。开发的基于ta2ptse7的光电探测器在从可见光到长波红外(LWIR)的广阔光谱范围内具有出色的宽带响应性。671 nm-10.6µm)。特别值得注意的是其在低工作电压(0.1 V)下的出色性能,在10.6µm照明下实现27 V W-1的高响应度-这是LWIR检测能力的重大进步。此外,柔性器件结构表现出优异的机械稳健性,在50次弯曲循环后保持超过70%的初始光电流,显示出柔性光电子学的巨大潜力。本研究提出了一种新的结构基元工程策略来设计各向异性材料,以Ta2PtSe7卓越的面内各向异性、宽带光响应和机械鲁棒性为例,实现高性能的各向异性光电器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Symmetry 2D Ta2PtSe7 Induced by Ultralong Structural Motifs for Flexible Long-Wave Infrared Photodetection up to 10.6 µm.
The limited ability of traditional 2D anisotropic materials to meet next-generation anisotropic device demands necessitates innovative design strategies. To address this challenge, a symmetry-reduction approach is proposed that enhances in-plane anisotropy by extending structural motifs to lower crystal symmetry. Implementing this design principle, a novel van der Waals material, Ta2PtSe7 atomic layers is successfully developed, featuring record-breaking [Ta4Pt2Se14] structural motifs with an unprecedented length of 20.1 Å. This unique architecture endows Ta2PtSe7 with remarkable intrinsic in-plane anisotropy, manifesting in strongly direction-dependent optical and electrical characteristics. The developed Ta2PtSe7-based photodetector demonstrates exceptional broadband responsiveness across an expansive spectral range from visible to long-wavelength infrared (LWIR; 671 nm-10.6 µm). Particularly noteworthy is its outstanding performance under low operating voltage (0.1 V), achieving a high responsivity of 27 V W-1 at 10.6 µm illumination - a significant advancement in LWIR detection capabilities. Furthermore, flexible device configurations exhibit excellent mechanical robustness, maintaining over 70% of initial photocurrent after 50 bending cycles, demonstrating promising potential for flexible optoelectronics. This study proposes a novel structural motif engineering strategy to design anisotropic materials, exemplified by Ta2PtSe7's exceptional in-plane anisotropy, broadband photoresponse, and mechanical robustness, enabling high-performance anisotropic optoelectronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信