Lulu Cheng, Zezheng Fang, Junpeng Wang, Kaiyan Xi, Yi Zhang, Fan Feng, Le Yu, Myla Santiago, Jingjing Wang, Zimei Wu, Kang-nan Wang, Thomas Daubon, Shilei Ni, Yanrong Zhang, Yulin Zhang
{"title":"线粒体不灵活性引发术后胶质母细胞瘤的肿瘤免疫原性","authors":"Lulu Cheng, Zezheng Fang, Junpeng Wang, Kaiyan Xi, Yi Zhang, Fan Feng, Le Yu, Myla Santiago, Jingjing Wang, Zimei Wu, Kang-nan Wang, Thomas Daubon, Shilei Ni, Yanrong Zhang, Yulin Zhang","doi":"10.1038/s41467-025-62244-5","DOIUrl":null,"url":null,"abstract":"<p>Cellular and molecular heterogeneity contributes to the insufficient immunogenicity of glioblastoma multiforme (GBM), a lethal malignancy characterized by post-resection relapse, ultimately leading to limited immune cell infiltration. Here, we report a strategy to boost tumor immunity by activating the endogenous cGAS-STING signaling pathway through in-situ manipulation of the mitochondrial electron transport chain (ETC), thereby augmenting the immune responsiveness of GBM. Under white light irradiation, the synthetic butterfly-shaped photosensitizer B-TTPy disrupts the mitochondrial ETC by producing excessive reactive oxygen species. Synergistically, inhibition of checkpoint kinase 1 amplifies ETC dysfunction, thus enhancing the cytotoxicity of B-TTPy against tumor cells. Our results demonstrate that the in-house-customized Mitochondrial Electron Alteration Nanoparticles in Glioblastoma (MEANING) efficiently activate innate and adaptive immune response by recruiting antigen-presenting cells and cytotoxic T cells to the surgical margin. Moreover, biodegradable hydrogel-medicated surgical cavity treatment with MEANING can reshape the immunosuppressive tumor microenvironment and eliminate residual GBM cells. In sum, our findings establish a local immune activation approach for GBM, to prevent postoperative tumor recurrence and identify ETC blockade as a promising therapeutic strategy for low-immunogenic tumors.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"74 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial inflexibility ignites tumor immunogenicity in postoperative glioblastoma\",\"authors\":\"Lulu Cheng, Zezheng Fang, Junpeng Wang, Kaiyan Xi, Yi Zhang, Fan Feng, Le Yu, Myla Santiago, Jingjing Wang, Zimei Wu, Kang-nan Wang, Thomas Daubon, Shilei Ni, Yanrong Zhang, Yulin Zhang\",\"doi\":\"10.1038/s41467-025-62244-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cellular and molecular heterogeneity contributes to the insufficient immunogenicity of glioblastoma multiforme (GBM), a lethal malignancy characterized by post-resection relapse, ultimately leading to limited immune cell infiltration. Here, we report a strategy to boost tumor immunity by activating the endogenous cGAS-STING signaling pathway through in-situ manipulation of the mitochondrial electron transport chain (ETC), thereby augmenting the immune responsiveness of GBM. Under white light irradiation, the synthetic butterfly-shaped photosensitizer B-TTPy disrupts the mitochondrial ETC by producing excessive reactive oxygen species. Synergistically, inhibition of checkpoint kinase 1 amplifies ETC dysfunction, thus enhancing the cytotoxicity of B-TTPy against tumor cells. Our results demonstrate that the in-house-customized Mitochondrial Electron Alteration Nanoparticles in Glioblastoma (MEANING) efficiently activate innate and adaptive immune response by recruiting antigen-presenting cells and cytotoxic T cells to the surgical margin. Moreover, biodegradable hydrogel-medicated surgical cavity treatment with MEANING can reshape the immunosuppressive tumor microenvironment and eliminate residual GBM cells. In sum, our findings establish a local immune activation approach for GBM, to prevent postoperative tumor recurrence and identify ETC blockade as a promising therapeutic strategy for low-immunogenic tumors.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62244-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62244-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Mitochondrial inflexibility ignites tumor immunogenicity in postoperative glioblastoma
Cellular and molecular heterogeneity contributes to the insufficient immunogenicity of glioblastoma multiforme (GBM), a lethal malignancy characterized by post-resection relapse, ultimately leading to limited immune cell infiltration. Here, we report a strategy to boost tumor immunity by activating the endogenous cGAS-STING signaling pathway through in-situ manipulation of the mitochondrial electron transport chain (ETC), thereby augmenting the immune responsiveness of GBM. Under white light irradiation, the synthetic butterfly-shaped photosensitizer B-TTPy disrupts the mitochondrial ETC by producing excessive reactive oxygen species. Synergistically, inhibition of checkpoint kinase 1 amplifies ETC dysfunction, thus enhancing the cytotoxicity of B-TTPy against tumor cells. Our results demonstrate that the in-house-customized Mitochondrial Electron Alteration Nanoparticles in Glioblastoma (MEANING) efficiently activate innate and adaptive immune response by recruiting antigen-presenting cells and cytotoxic T cells to the surgical margin. Moreover, biodegradable hydrogel-medicated surgical cavity treatment with MEANING can reshape the immunosuppressive tumor microenvironment and eliminate residual GBM cells. In sum, our findings establish a local immune activation approach for GBM, to prevent postoperative tumor recurrence and identify ETC blockade as a promising therapeutic strategy for low-immunogenic tumors.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.