土壤微生物和植物对气候变暖的不同物候响应

IF 16.1 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Hao Wang, Huimin Zhou, Jin-Sheng He, Chunyan Lu, Yixuan Huang, Juanjuan Zhang, Huiying Liu, Madhav P. Thakur
{"title":"土壤微生物和植物对气候变暖的不同物候响应","authors":"Hao Wang, Huimin Zhou, Jin-Sheng He, Chunyan Lu, Yixuan Huang, Juanjuan Zhang, Huiying Liu, Madhav P. Thakur","doi":"10.1038/s41561-025-01738-9","DOIUrl":null,"url":null,"abstract":"<p>Anthropogenic climate warming is altering phenology—the biological timing of life-cycle events—across trophic levels worldwide. However, it remains unclear whether warming induces differential changes in phenology between plants and soil microorganisms—two fundamental components of terrestrial biodiversity and food chains. Here we report a consistent mismatch between plant and soil microbial phenology under climate warming, on the basis of 1,032 globally distributed observations of phenological shifts in plant and/or soil microbial respiration in response to experimental warming. Advances in spring phenology and delays in autumn phenology are greater in soil microorganisms than in both plant shoots and roots, particularly under tall vegetation (for example, forests) compared with low vegetation (for example, grasslands). Furthermore, phenology shifts in soil microorganisms are greater in soils with high carbon-to-nitrogen ratios, such as those in boreal regions, than in those with lower ratios. Such phenological mismatches between plants and soil microorganisms could destabilize their temporal synchrony, decoupling above- and belowground processes, and ultimately degrading energy flow and ecosystem functioning under climate warming.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"23 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divergent phenological responses of soil microorganisms and plants to climate warming\",\"authors\":\"Hao Wang, Huimin Zhou, Jin-Sheng He, Chunyan Lu, Yixuan Huang, Juanjuan Zhang, Huiying Liu, Madhav P. Thakur\",\"doi\":\"10.1038/s41561-025-01738-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Anthropogenic climate warming is altering phenology—the biological timing of life-cycle events—across trophic levels worldwide. However, it remains unclear whether warming induces differential changes in phenology between plants and soil microorganisms—two fundamental components of terrestrial biodiversity and food chains. Here we report a consistent mismatch between plant and soil microbial phenology under climate warming, on the basis of 1,032 globally distributed observations of phenological shifts in plant and/or soil microbial respiration in response to experimental warming. Advances in spring phenology and delays in autumn phenology are greater in soil microorganisms than in both plant shoots and roots, particularly under tall vegetation (for example, forests) compared with low vegetation (for example, grasslands). Furthermore, phenology shifts in soil microorganisms are greater in soils with high carbon-to-nitrogen ratios, such as those in boreal regions, than in those with lower ratios. Such phenological mismatches between plants and soil microorganisms could destabilize their temporal synchrony, decoupling above- and belowground processes, and ultimately degrading energy flow and ecosystem functioning under climate warming.</p>\",\"PeriodicalId\":19053,\"journal\":{\"name\":\"Nature Geoscience\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41561-025-01738-9\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41561-025-01738-9","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人为的气候变暖正在改变全球各营养层的物候——生命周期事件的生物时间。然而,目前尚不清楚变暖是否会导致植物和土壤微生物物候的差异变化——这是陆地生物多样性和食物链的两个基本组成部分。本文基于1032个全球分布的植物和/或土壤微生物呼吸的物候变化响应实验变暖的观测结果,报告了气候变暖下植物和土壤微生物物候变化之间一致的不匹配。土壤微生物在春季物候学方面的进展和秋季物候学方面的延迟要大于植物芽和根,特别是在高植被(例如森林)下比在低植被(例如草原)下。此外,土壤微生物的物候变化在碳氮比高的土壤中,如在北方地区,比在碳氮比低的土壤中更大。这种植物与土壤微生物之间的物候不匹配可能会破坏它们的时间同步,使地上和地下的过程脱钩,并最终降低气候变暖下的能量流动和生态系统功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Divergent phenological responses of soil microorganisms and plants to climate warming

Divergent phenological responses of soil microorganisms and plants to climate warming

Anthropogenic climate warming is altering phenology—the biological timing of life-cycle events—across trophic levels worldwide. However, it remains unclear whether warming induces differential changes in phenology between plants and soil microorganisms—two fundamental components of terrestrial biodiversity and food chains. Here we report a consistent mismatch between plant and soil microbial phenology under climate warming, on the basis of 1,032 globally distributed observations of phenological shifts in plant and/or soil microbial respiration in response to experimental warming. Advances in spring phenology and delays in autumn phenology are greater in soil microorganisms than in both plant shoots and roots, particularly under tall vegetation (for example, forests) compared with low vegetation (for example, grasslands). Furthermore, phenology shifts in soil microorganisms are greater in soils with high carbon-to-nitrogen ratios, such as those in boreal regions, than in those with lower ratios. Such phenological mismatches between plants and soil microorganisms could destabilize their temporal synchrony, decoupling above- and belowground processes, and ultimately degrading energy flow and ecosystem functioning under climate warming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Geoscience
Nature Geoscience 地学-地球科学综合
CiteScore
26.70
自引率
1.60%
发文量
187
审稿时长
3.3 months
期刊介绍: Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields. The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies. Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology. Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信