在气候变暖的情况下评估火灾天气变化的挑战

IF 8.4 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Aurora Matteo, Ginés Garnés-Morales, Alberto Moreno, Andreia F. S. Ribeiro, Cesar Azorin-Molina, Joaquín Bedia, Francesca Di Giuseppe, Robert J. H. Dunn, Sixto Herrera, Antonello Provenzale, Yann Quilcaille, Miguel Ángel Torres-Vázquez, Marco Turco
{"title":"在气候变暖的情况下评估火灾天气变化的挑战","authors":"Aurora Matteo, Ginés Garnés-Morales, Alberto Moreno, Andreia F. S. Ribeiro, Cesar Azorin-Molina, Joaquín Bedia, Francesca Di Giuseppe, Robert J. H. Dunn, Sixto Herrera, Antonello Provenzale, Yann Quilcaille, Miguel Ángel Torres-Vázquez, Marco Turco","doi":"10.1038/s41612-025-01163-0","DOIUrl":null,"url":null,"abstract":"<p>The Canadian Fire Weather Index (FWI), widely used to assess wildfire danger, typically relies on noon-specific meteorological data. However, climate models often provide only daily aggregated values, posing a challenge for accurate FWI calculations. We evaluated daily approximations for FWI95d—the annual count of extreme fire-weather days—against the standard noon-based method (1980–2023). Our findings reveal that noon-based FWI95d show a global increase of ~65% (11.66 days over 44 years). In contrast, daily approximations tend to overestimate these trends by 5–10%, with combinations involving minimum relative humidity showing the largest divergences. Globally, up to 15 million km²—particularly in the western United States, southern Africa, and parts of Asia—exhibit significant overestimations. We recommend (i) prioritizing the inclusion of sub-daily meteorological data in future climate model intercomparison projects to enhance FWI accuracy, and (ii) adopting daily mean approximations as the least-biased alternative if noon-specific data are unavailable.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"24 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges in assessing Fire Weather changes in a warming climate\",\"authors\":\"Aurora Matteo, Ginés Garnés-Morales, Alberto Moreno, Andreia F. S. Ribeiro, Cesar Azorin-Molina, Joaquín Bedia, Francesca Di Giuseppe, Robert J. H. Dunn, Sixto Herrera, Antonello Provenzale, Yann Quilcaille, Miguel Ángel Torres-Vázquez, Marco Turco\",\"doi\":\"10.1038/s41612-025-01163-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Canadian Fire Weather Index (FWI), widely used to assess wildfire danger, typically relies on noon-specific meteorological data. However, climate models often provide only daily aggregated values, posing a challenge for accurate FWI calculations. We evaluated daily approximations for FWI95d—the annual count of extreme fire-weather days—against the standard noon-based method (1980–2023). Our findings reveal that noon-based FWI95d show a global increase of ~65% (11.66 days over 44 years). In contrast, daily approximations tend to overestimate these trends by 5–10%, with combinations involving minimum relative humidity showing the largest divergences. Globally, up to 15 million km²—particularly in the western United States, southern Africa, and parts of Asia—exhibit significant overestimations. We recommend (i) prioritizing the inclusion of sub-daily meteorological data in future climate model intercomparison projects to enhance FWI accuracy, and (ii) adopting daily mean approximations as the least-biased alternative if noon-specific data are unavailable.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-025-01163-0\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01163-0","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

加拿大火灾天气指数(FWI)被广泛用于评估野火危险,通常依赖于非特定的气象数据。然而,气候模式通常只提供每日的汇总值,这对准确计算FWI提出了挑战。我们根据1980-2023年基于正午的标准方法,评估了fwi95(每年极端火灾天气天数)的每日近似值。我们的研究结果表明,以中午为基础的FWI95d在全球范围内增加了约65%(11.66天/ 44年)。相反,每日近似值倾向于高估这些趋势5-10%,涉及最小相对湿度的组合显示出最大的差异。在全球范围内,高达1500万平方公里——特别是在美国西部、非洲南部和亚洲部分地区——显示出严重的高估。我们建议(i)在未来的气候模式比较项目中优先纳入亚日气象数据,以提高FWI的准确性;(ii)在没有非特定数据的情况下,采用日均值近似作为偏差最小的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Challenges in assessing Fire Weather changes in a warming climate

Challenges in assessing Fire Weather changes in a warming climate

The Canadian Fire Weather Index (FWI), widely used to assess wildfire danger, typically relies on noon-specific meteorological data. However, climate models often provide only daily aggregated values, posing a challenge for accurate FWI calculations. We evaluated daily approximations for FWI95d—the annual count of extreme fire-weather days—against the standard noon-based method (1980–2023). Our findings reveal that noon-based FWI95d show a global increase of ~65% (11.66 days over 44 years). In contrast, daily approximations tend to overestimate these trends by 5–10%, with combinations involving minimum relative humidity showing the largest divergences. Globally, up to 15 million km²—particularly in the western United States, southern Africa, and parts of Asia—exhibit significant overestimations. We recommend (i) prioritizing the inclusion of sub-daily meteorological data in future climate model intercomparison projects to enhance FWI accuracy, and (ii) adopting daily mean approximations as the least-biased alternative if noon-specific data are unavailable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信