模拟和主动学习能够有效识别经过实验验证的广泛冠状病毒抑制剂

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Katarina Elez, Tim Hempel, Jonathan H. Shrimp, Nicole Moor, Lluís Raich, Cheila Rocha, Robin Winter, Tuan Le, Stefan Pöhlmann, Markus Hoffmann, Matthew D. Hall, Frank Noé
{"title":"模拟和主动学习能够有效识别经过实验验证的广泛冠状病毒抑制剂","authors":"Katarina Elez, Tim Hempel, Jonathan H. Shrimp, Nicole Moor, Lluís Raich, Cheila Rocha, Robin Winter, Tuan Le, Stefan Pöhlmann, Markus Hoffmann, Matthew D. Hall, Frank Noé","doi":"10.1038/s41467-025-62139-5","DOIUrl":null,"url":null,"abstract":"<p>Drug screening resembles finding a needle in a haystack: identifying a few effective inhibitors from a large pool of potential drugs. Large experimental screens are expensive and time-consuming, while virtual screening trades off computational efficiency and experimental correlation. Here we develop a framework that combines molecular dynamics (MD) simulations with active learning. Two components drastically reduce the number of candidates needing experimental testing to less than 20: (1) a target-specific score that evaluates target inhibition and (2) extensive MD simulations to generate a receptor ensemble. The active learning approach reduces the number of compounds requiring experimental testing to less than 10 and cuts computational costs by <span>∼</span>29-fold. Using this framework, we discovered BMS-262084 as a potent inhibitor of TMPRSS2 (IC50 = 1.82 nM). Cell-based experiments confirmed BMS-262084’s efficacy in blocking entry of various SARS-CoV-2 variants and other coronaviruses. The identified inhibitor holds promise for treating viral and other diseases involving TMPRSS2.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"75 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulations and active learning enable efficient identification of an experimentally-validated broad coronavirus inhibitor\",\"authors\":\"Katarina Elez, Tim Hempel, Jonathan H. Shrimp, Nicole Moor, Lluís Raich, Cheila Rocha, Robin Winter, Tuan Le, Stefan Pöhlmann, Markus Hoffmann, Matthew D. Hall, Frank Noé\",\"doi\":\"10.1038/s41467-025-62139-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Drug screening resembles finding a needle in a haystack: identifying a few effective inhibitors from a large pool of potential drugs. Large experimental screens are expensive and time-consuming, while virtual screening trades off computational efficiency and experimental correlation. Here we develop a framework that combines molecular dynamics (MD) simulations with active learning. Two components drastically reduce the number of candidates needing experimental testing to less than 20: (1) a target-specific score that evaluates target inhibition and (2) extensive MD simulations to generate a receptor ensemble. The active learning approach reduces the number of compounds requiring experimental testing to less than 10 and cuts computational costs by <span>∼</span>29-fold. Using this framework, we discovered BMS-262084 as a potent inhibitor of TMPRSS2 (IC50 = 1.82 nM). Cell-based experiments confirmed BMS-262084’s efficacy in blocking entry of various SARS-CoV-2 variants and other coronaviruses. The identified inhibitor holds promise for treating viral and other diseases involving TMPRSS2.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62139-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62139-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

药物筛选就像大海捞针:从一大堆潜在药物中找出一些有效的抑制剂。大型实验屏幕既昂贵又耗时,而虚拟筛选则权衡了计算效率和实验相关性。在这里,我们开发了一个框架,结合分子动力学(MD)模拟与主动学习。两个组成部分将需要实验测试的候选药物数量大幅减少到20个以下:(1)评估靶标抑制的靶标特异性评分;(2)广泛的MD模拟以生成受体集合。主动学习方法将需要实验测试的化合物数量减少到10个以下,并将计算成本降低了29倍。在此框架下,我们发现BMS-262084是TMPRSS2的有效抑制剂(IC50 = 1.82 nM)。基于细胞的实验证实了BMS-262084对阻断多种SARS-CoV-2变体和其他冠状病毒的进入有效。确定的抑制剂有望治疗涉及TMPRSS2的病毒和其他疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simulations and active learning enable efficient identification of an experimentally-validated broad coronavirus inhibitor

Simulations and active learning enable efficient identification of an experimentally-validated broad coronavirus inhibitor

Drug screening resembles finding a needle in a haystack: identifying a few effective inhibitors from a large pool of potential drugs. Large experimental screens are expensive and time-consuming, while virtual screening trades off computational efficiency and experimental correlation. Here we develop a framework that combines molecular dynamics (MD) simulations with active learning. Two components drastically reduce the number of candidates needing experimental testing to less than 20: (1) a target-specific score that evaluates target inhibition and (2) extensive MD simulations to generate a receptor ensemble. The active learning approach reduces the number of compounds requiring experimental testing to less than 10 and cuts computational costs by 29-fold. Using this framework, we discovered BMS-262084 as a potent inhibitor of TMPRSS2 (IC50 = 1.82 nM). Cell-based experiments confirmed BMS-262084’s efficacy in blocking entry of various SARS-CoV-2 variants and other coronaviruses. The identified inhibitor holds promise for treating viral and other diseases involving TMPRSS2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信